287
views
0
recommends
+1 Recommend
0 collections
    20
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autophagy Protein Atg3 is Essential for Maintaining Mitochondrial Integrity and for Normal Intracellular Development of Toxoplasma gondii Tachyzoites

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy is a cellular process that is highly conserved among eukaryotes and permits the degradation of cellular material. Autophagy is involved in multiple survival-promoting processes. It not only facilitates the maintenance of cell homeostasis by degrading long-lived proteins and damaged organelles, but it also plays a role in cell differentiation and cell development. Equally important is its function for survival in stress-related conditions such as recycling of proteins and organelles during nutrient starvation. Protozoan parasites have complex life cycles and face dramatically changing environmental conditions; whether autophagy represents a critical coping mechanism throughout these changes remains poorly documented. To investigate this in Toxoplasma gondii, we have used TgAtg8 as an autophagosome marker and showed that autophagy and the associated cellular machinery are present and functional in the parasite. In extracellular T. gondii tachyzoites, autophagosomes were induced in response to amino acid starvation, but they could also be observed in culture during the normal intracellular development of the parasites. Moreover, we generated a conditional T. gondii mutant lacking the orthologue of Atg3, a key autophagy protein. TgAtg3-depleted parasites were unable to regulate the conjugation of TgAtg8 to the autophagosomal membrane. The mutant parasites also exhibited a pronounced fragmentation of their mitochondrion and a drastic growth phenotype. Overall, our results show that TgAtg3-dependent autophagy might be regulating mitochondrial homeostasis during cell division and is essential for the normal development of T. gondii tachyzoites.

          Author Summary

          Autophagy is a catabolic process involved in maintaining cellular homeostasis in eukaryotic cells, while coping with their changing environmental conditions. Mechanistically, it is also a process of considerable complexity involving multiple protein factors and implying numerous protein-protein and protein-membrane interactions. The cellular material to be degraded by autophagy is contained in a membrane-bound compartment called the autophagosome. We have characterised the formation of autophagosomes in the protozoan parasite Toxoplasma gondii by following the relocalisation of autophagosome-bound TgAtg8. Thus, exploiting GFP-TgAtg8 as a marker, we showed that it is a process that is regulated and can be induced artificially by amino acid starvation. Autophagic vesicles were also observed in normally dividing intracellular parasites. Depleting Toxoplasma of the TgAtg3 autophagy protein led to an impairment of TgAtg8 conjugation to the autophagosomal membrane and, at the cellular level, to a fragmentation of the single mitochondrion of the parasite and to a severe growth arrest. We have thus found that TgAtg3-dependent autophagy is essential for normal intracellular development of T. gondii tachyzoites.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion.

          Autophagy involves de novo formation of double membrane-bound structures called autophagosomes, which engulf material to be degraded in lytic compartments. Atg8 is a ubiquitin-like protein required for this process in Saccharomyces cerevisiae that can be conjugated to the lipid phosphatidylethanolamine by a ubiquitin-like system. Here, we show using an in vitro system that Atg8 mediates the tethering and hemifusion of membranes, which are evoked by the lipidation of the protein and reversibly modulated by the deconjugation enzyme Atg4. Mutational analyses suggest that membrane tethering and hemifusion observed in vitro represent an authentic function of Atg8 in autophagosome formation in vivo. In addition, electron microscopic analyses indicate that these functions of Atg8 are involved in the expansion of autophagosomal membranes. Our results provide further insights into the mechanisms underlying the unique membrane dynamics of autophagy and also indicate the functional versatility of ubiquitin-like proteins.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A unified nomenclature for yeast autophagy-related genes.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80.

              As with other organisms with a completed genome sequence, opportunities for performing large-scale studies, such as expression and localization, on Toxoplasma gondii are now much more feasible. We present a system for tagging genes endogenously with yellow fluorescent protein (YFP) in a Deltaku80 strain. Ku80 is involved in DNA strand repair and nonhomologous DNA end joining; previous studies in other organisms have shown that in its absence, random integration is eliminated, allowing the insertion of constructs with homologous sequences into the proper loci. We generated a vector consisting of YFP and a dihydrofolate reductase-thymidylate synthase selectable marker. The YFP is preceded by a ligation-independent cloning (LIC) cassette, which allows the insertion of PCR products containing complementary LIC sequences. We demonstrated that the Deltaku80 strain is more effective and efficient in integrating the YFP-tagged constructs into the correct locus than wild-type strain RH. We then selected several hypothetical proteins that were identified by a proteomic screen of excreted-secreted antigens and that displayed microarray expression profiles similar to known micronemal proteins, with the thought that these could potentially be new proteins with roles in cell invasion. We localized these hypothetical proteins by YFP fluorescence and showed expression by immunoblotting. Our findings demonstrate that the combination of the Deltaku80 strain and the pYFP.LIC constructs reduces both the time and cost required to determine localization of a new gene of interest. This should allow the opportunity for performing larger-scale studies of novel T. gondii genes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2011
                December 2011
                1 December 2011
                : 7
                : 12
                : e1002416
                Affiliations
                [1 ]UMR 5235 CNRS, Universités de Montpellier 2 et 1, Dynamique des Interactions Membranaires Normales et Pathologiques, Montpellier, France
                [2 ]INSERM, Dynamique des Interactions Membranaires Normales et Pathologiques, Montpellier, France
                [3 ]Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
                University of Michigan, United States of America
                Author notes

                Conceived and designed the experiments: SB. Performed the experiments: SB JFD. Analyzed the data: SB JFD. Contributed reagents/materials/analysis tools: CFB BS. Wrote the paper: SB BS.

                Article
                PPATHOGENS-D-11-01365
                10.1371/journal.ppat.1002416
                3228817
                22144900
                c08bc3fb-f30e-4a06-bb2d-01f4e463485e
                Besteiro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 June 2011
                : 21 October 2011
                Page count
                Pages: 19
                Categories
                Research Article
                Biology
                Microbiology
                Protozoology
                Parastic Protozoans
                Toxoplasma Gondii

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article