8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-211-5p suppresses tumour cell proliferation, invasion, migration and metastasis in triple-negative breast cancer by directly targeting SETBP1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Triple-negative breast cancer (TNBC) accounts for 15–20% of all breast cancer in women globally. This subtype often has early and high recurrence rates, resulting in poor survival, partially due to lack of targeted therapies. To date, the detailed molecular mechanisms underlying TNBC progression are unclear. Given the crucial role of microRNAs (miRNAs) in cancer metastasis, we aimed to analyse the expression and function of a metastasis-associated miRNA named miR-211-5p in TNBC.

          Methods:

          MiRNA array analysis was performed to search for metastasis-associated miRNAs in TNBC. The miR-211-5p expression in tumour tissues, adjacent non-tumourous breast tissues of TNBC patients and cell lines were evaluated by real-time PCR. The protein expression levels were analysed by western blot, immunohistochemistry and in situ hybridisation. Luciferase reporter assays were employed to validate the target of miR-211-5p. The effect of miR-211-5p on TNBC progression was investigated in vitro and in vivo.

          Results:

          MiR-211-5p was significantly downregulated in TNBC, and its expression level was associated with overall survival in TNBC. The expression of miR-211-5p suppressed TNBC cell proliferation, invasion, migration and metastasis in vitro and in vivo. Furthermore, SETBP1 was identified as a target of miR-211-5p. Through gain-of-function and loss-of-function studies, SETBP1 was shown to significantly affect colony and cell number in vitro. Enforced expression of miR-211-5p inhibited the expression of SETBP1 significantly and the restoration of SETBP1 expression reversed the inhibitory effects of miR-211-5p on TNBC cell proliferation and metastasis.

          Conclusions:

          These findings collectively demonstrate a tumour suppressor role of miR-211-5p in TNBC progression by targeting SETBP1, suggesting that miR-211-5p could serve as a potential prognostic biomarker and therapeutic target for TNBC.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          The long and short of microRNA.

          MicroRNAs (miRNAs) are versatile regulators of gene expression in higher eukaryotes. In order to silence many different mRNAs in a precise manner, miRNA stability and efficacy is controlled by highly developed regulatory pathways and fine-tuning mechanisms both affecting miRNA processing and altering mature miRNA target specificity. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Response and resistance to BET bromodomain inhibitors in triple negative breast cancer

            Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy 1-3 . BET bromodomain inhibitors, which have shown efficacy in several models of cancer 4-6 , have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyllysine recognition modules, leading to inhibition of oncogenic transcriptional programs 7-9 . Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The shaping and functional consequences of the microRNA landscape in breast cancer.

              MicroRNAs (miRNAs) show differential expression across breast cancer subtypes, and have both oncogenic and tumour-suppressive roles. Here we report the miRNA expression profiles of 1,302 breast tumours with matching detailed clinical annotation, long-term follow-up and genomic and messenger RNA expression data. This provides a comprehensive overview of the quantity, distribution and variation of the miRNA population and provides information on the extent to which genomic, transcriptional and post-transcriptional events contribute to miRNA expression architecture, suggesting an important role for post-transcriptional regulation. The key clinical parameters and cellular pathways related to the miRNA landscape are characterized, revealing context-dependent interactions, for example with regards to cell adhesion and Wnt signalling. Notably, only prognostic miRNA signatures derived from breast tumours devoid of somatic copy-number aberrations (CNA-devoid) are consistently prognostic across several other subtypes and can be validated in external cohorts. We then use a data-driven approach to seek the effects of miRNAs associated with differential co-expression of mRNAs, and find that miRNAs act as modulators of mRNA-mRNA interactions rather than as on-off molecular switches. We demonstrate such an important modulatory role for miRNAs in the biology of CNA-devoid breast cancers, a common subtype in which the immune response is prominent. These findings represent a new framework for studying the biology of miRNAs in human breast cancer.
                Bookmark

                Author and article information

                Journal
                Br J Cancer
                Br. J. Cancer
                British Journal of Cancer
                Nature Publishing Group
                0007-0920
                1532-1827
                27 June 2017
                01 June 2017
                : 117
                : 1
                : 78-88
                Affiliations
                [1 ]The Department of Surgical Oncology, Ningbo No.2 Hospital , Ningbo, Zhejiang Province 315500, China
                Author notes
                Article
                bjc2017150
                10.1038/bjc.2017.150
                5520212
                28571042
                c0d7f68d-b80a-4a82-ae9c-c05deeab6344
                Copyright © 2017 Cancer Research UK

                From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 07 September 2016
                : 11 March 2017
                : 02 May 2017
                Categories
                Molecular Diagnostics

                Oncology & Radiotherapy
                micrornas,triple-negative breast cancer,mir-211-5p,setbp1,pathogenesis
                Oncology & Radiotherapy
                micrornas, triple-negative breast cancer, mir-211-5p, setbp1, pathogenesis

                Comments

                Comment on this article