5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eicosapentaenoic Acid Improves Hepatic Metabolism and Reduces Inflammation Independent of Obesity in High-Fat-Fed Mice and in HepG2 Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide, concurrent with increased obesity. Thus, there is urgent need for research that can lead to effective NAFLD prevention/treatment strategies. Omega-3 polyunsaturated fatty acids (n-3 PUFAs), including eicosapentaenoic acid (EPA), improve inflammation- and dyslipidemia-related metabolic disorders; however, mechanisms mediating the benefits of n-3 PUFAs in NAFLD treatment are less understood. We previously reported that EPA reversed obesity-induced hepatic steatosis in high-fat (HF)-fed B6 mice. Utilizing a combination of biochemical analyses of liver tissues from HF and HF-EPA-fed mice and a series of in vitro studies in tumor necrosis factor-alpha (TNF-α)-stimulated HepG2 cells, we dissect the mechanistic effects of EPA in reducing hepatic steatosis, including the role of EPA-targeted microRNAs (miRNA). With EPA, hepatic lipid metabolism was improved in HF-EPA mice, as indicated by decreased protein and messenger RNA (mRNA) levels of fatty acid synthase (FASN) and acetyl-CoA carboxylase ( Acaca) gene, and increased mRNA levels for the peroxisome proliferator activated receptor-α ( Pparα), and carnitine palmitoyltransferase ( Cpt) 1a and 2 genes in the HF-EPA mice. Additionally, inflammation was reduced, as shown by decreased tumor necrosis factor-alpha ( Tnfα) gene expression. Accordingly, EPA also significantly reduced FASN and ACACA mRNAs in human HepG2 cells. Glycolysis, estimated by extracellular acidification rate, was significantly reduced in HepG2 cells treated with EPA vs. vehicle. Furthermore, we identified several miRNAs that are regulated by EPA in mouse liver, including miR-19b-3p, miR-21a-5p, and others, which target lipid metabolism and inflammatory pathways. In conclusion, our findings provide novel mechanistic evidence for beneficial effects of EPA in NAFLD, through the identification of specific genes and miRNAs, which may be further exploited as future NAFLD therapies.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease.

          Nonalcoholic steatohepatitis is a poorly understood and hitherto unnamed liver disease that histologically mimics alcoholic hepatitis and that also may progress to cirrhosis. Described here are findings in 20 patients with nonalcoholic steatohepatitis of unknown cause. The biopsy specimens were characterized by the presence of striking fatty changes with evidence of lobular hepatitis, focal necroses with mixed inflammatory infiltrates, and, in most instances, Mallory bodies; Evidence of fibrosis was found in most specimens, and cirrhosis was diagnosed in biopsy tissue from three patients. The disease was more common in women. Most patients were moderately obese, and many had obesity-associated diseases, such as diabetes mellitus and cholelithiasis. Presence of hepatomegaly and mild abnormalities of liver function were common clinical findings. Currently, we know of no effective therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The AMP-activated protein kinase--fuel gauge of the mammalian cell?

            A single entity, the AMP-activated protein kinase (AMPK), phosphorylates and regulates in vivo hydroxymethylglutaryl-CoA reductase and acetyl-CoA carboxylase (key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively), and probably many additional targets. The kinase is activated by high AMP and low ATP via a complex mechanism, which involves allosteric regulation, promotion of phosphorylation by an upstream protein kinase (AMPK kinase), and inhibition of dephosphorylation. This protein-kinase cascade represents a sensitive system, which is activated by cellular stresses that deplete ATP, and thus acts like a cellular fuel gauge. Our central hypothesis is that, when it detects a 'low-fuel' situation, it protects the cell by switching off ATP-consuming pathways (e.g. fatty acid synthesis and sterol synthesis) and switching on alternative pathways for ATP generation (e.g. fatty acid oxidation). Native AMP-activated protein kinase is a heterotrimer consisting of a catalytic alpha subunit, and beta and gamma subunits, which are also essential for activity. All three subunits have homologues in budding yeast, which are components of the SNF1 protein-kinase complex. SNF1 is activated by glucose starvation (which in yeast leads to ATP depletion) and genetic studies have shown that it is involved in derepression of glucose-repressed genes. This raises the intriguing possibility that AMPK may regulate gene expression in mammals. AMPK/SNF1 homologues are found in higher plants, and this protein-kinase cascade appears to be an ancient system which evolved to protect cells against the effects of nutritional or environmental stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders.

              We hypothesized that the lipid-activated transcription factor, the peroxisome proliferator-activated receptor alpha (PPARalpha), plays a pivotal role in the cellular metabolic response to fasting. Short-term starvation caused hepatic steatosis, myocardial lipid accumulation, and hypoglycemia, with an inadequate ketogenic response in adult mice lacking PPARalpha (PPARalpha-/-), a phenotype that bears remarkable similarity to that of humans with genetic defects in mitochondrial fatty acid oxidation enzymes. In PPARalpha+/+ mice, fasting induced the hepatic and cardiac expression of PPARalpha target genes encoding key mitochondrial (medium-chain acyl-CoA dehydrogenase, carnitine palmitoyltransferase I) and extramitochondrial (acyl-CoA oxidase, cytochrome P450 4A3) enzymes. In striking contrast, the hepatic and cardiac expression of most PPARalpha target genes was not induced by fasting in PPARalpha-/- mice. These results define a critical role for PPARalpha in a transcriptional regulatory response to fasting and identify the PPARalpha-/- mouse as a potentially useful murine model of inborn and acquired abnormalities of human fatty acid utilization.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                12 March 2019
                March 2019
                : 11
                : 3
                : 599
                Affiliations
                [1 ]Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA; kembra.albracht@ 123456ttu.edu (K.A.-S.); samantha.m.gonzalez@ 123456ttuhsc.edu (S.G.); abigail.jackson@ 123456ttu.edu (A.J.); savanna.wilson@ 123456ttu.edu (S.W.); latha.ramalingam@ 123456ttu.edu (L.R.); skalupahana@ 123456pdn.ac.lk (N.S.K.)
                [2 ]Department of Physiology, University of Peradeniya, 20400 Peradeniya, Sri Lanka
                Author notes
                [* ]Correspondence: naima.moustaid-moussa@ 123456ttu.edu ; Tel.: +1-806-834-7946
                Author information
                https://orcid.org/0000-0002-7508-8030
                Article
                nutrients-11-00599
                10.3390/nu11030599
                6471632
                30871035
                c12e5313-cc26-477d-8ab2-019ee8eabe83
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 January 2019
                : 06 March 2019
                Categories
                Article

                Nutrition & Dietetics
                eicosapentaenoic acid,inflammation,nonalcoholic fatty liver disease,obesity,omega-3 polyunsaturated fatty acids

                Comments

                Comment on this article