51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Long interspersed nuclear elements (LINEs), Alu and endogenous retroviruses (ERVs) make up some 45% of human DNA. LINE-1 also called L1, is the most common family of non-LTR retrotransposons in the human genome and comprises about 17% of the genome. L1 elements require the integration into chromosomal target sites using L1-encoded endonuclease which creates staggering DNA breaks allowing the newly transposed L1 copies to integrate into the genome. L1 expression and retrotransposition in cancer cells might cause transcriptional deregulation, insertional mutations, DNA breaks, and an increased frequency of recombinations, contributing to genome instability. There is however little evidence on the mechanism of L1-induced genetic instability and its impact on cancer cell growth and proliferation.

          Results

          We report that L1 has genome-destabilizing effects indicated by an accumulation of γ-H2AX foci, an early response to DNA strand breaks, in association with an abnormal cell cycle progression through a G2/M accumulation and an induction of apoptosis in breast cancer cells. In addition, we found that adjuvant L1 activation may lead to supra-additive killing when combined with radiation by enhancing the radiation lethality through induction of apoptosis that we have detected through Bax activation.

          Conclusion

          L1 retrotransposition is sensed as a DNA damaging event through the creation DNA breaks involving L1-encoded endonuclease. The apparent synergistic interaction between L1 activation and radiation can further be utilized for targeted induction of cancer cell death. Thus, the role of retrotransoposons in general, and of L1 in particular, in DNA damage and repair assumes larger significance both for the understanding of mutagenicity and, potentially, for the control of cell proliferation and apoptosis.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Mobile elements: drivers of genome evolution.

          Mobile elements within genomes have driven genome evolution in diverse ways. Particularly in plants and mammals, retrotransposons have accumulated to constitute a large fraction of the genome and have shaped both genes and the entire genome. Although the host can often control their numbers, massive expansions of retrotransposons have been tolerated during evolution. Now mobile elements are becoming useful tools for learning more about genome evolution and gene function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition.

            R2 is a non-LTR retrotransposable element that inserts at a specific site in the 28S rRNA genes of most insects. We have expressed the open reading frame of the R2 element from Bombyx mori, R2Bm, in E. coli and shown that it encodes both sequence-specific endonuclease and reverse transcriptase activities. The R2 protein makes a specific nick in one of the DNA strands at the insertion site and uses the 3' hydroxyl group exposed by this nick to prime reverse transcription of its RNA transcript. After reverse transcription, cleavage of the second DNA strand occurs. A similar mechanism of insertion may be used by other non-LTR retrotransposable elements as well as short interspersed nucleotide elements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation.

              H2AX phosphorylation is an early step in the response to DNA damage. It is widely accepted that ATM (ataxia telangiectasia mutated protein) phosphorylates H2AX in response to DNA double-strand breaks (DSBs). Whether DNA-dependent protein kinase (DNA-PK) plays any role in this response is unclear. Here, we show that H2AX phosphorylation after exposure to ionizing radiation (IR) occurs to similar extents in human fibroblasts and in mouse embryo fibroblasts lacking either DNA-PK or ATM but is ablated in ATM-deficient cells treated with LY294002, a drug that specifically inhibits DNA-PK. Additionally, we show that inactivation of both DNA-PK and ATM is required to ablate IR-induced H2AX phosphorylation in chicken cells. We confirm that H2AX phosphorylation induced by DSBs in nonreplicating cells is ATR (ataxia telangiectasia and Rad3-related protein) independent. Taken together, we conclude that under most normal growth conditions, IR-induced H2AX phosphorylation can be carried out by ATM and DNA-PK in a redundant, overlapping manner. In contrast, DNA-PK cannot phosphorylate other proteins involved in the checkpoint response, including chromatin-associated Rad17. However, by phosphorylating H2AX, DNA-PK can contribute to the presence of the damage response proteins MDC1 and 53BP1 at the site of the DSB.
                Bookmark

                Author and article information

                Journal
                Cancer Cell Int
                Cancer Cell International
                BioMed Central (London )
                1475-2867
                2006
                2 May 2006
                : 6
                : 13
                Affiliations
                [1 ]Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
                [2 ]Center for Reproductive Medicine and Infertility, Weill Medical College, Cornell University, New York, NY 10021, USA
                Article
                1475-2867-6-13
                10.1186/1475-2867-6-13
                1464142
                16670018
                c16a143d-05f2-4ada-930a-76d62c76aa3f
                Copyright © 2006 Belgnaoui et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 March 2006
                : 2 May 2006
                Categories
                Primary Research

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article