0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A comparative meta-analysis of peripheral 8-hydroxy-2′-deoxyguanosine (8-OHdG) or 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG) levels across mood episodes in bipolar disorder

      , , ,
      Psychoneuroendocrinology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d6064866e99">Oxidative DNA damage has been associated with the pathophysiology of bipolar disorder (BD) as one of the common pathways between increased medical comorbidity and premature aging in BD. Previous evidence shows increased levels of oxidatively induced DNA damage markers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) or its tautomer 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), in patients with BD in comparison to healthy individuals. With the current research, we aim to analyze data on peripheral (blood or urine) 8-OHdG/8-oxo-dG levels across mood states of BD using a meta-analytical approach. </p>

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          Bias in meta-analysis detected by a simple, graphical test

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            8-hydroxy-2' -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis.

            There is extensive experimental evidence that oxidative damage permanently occurs to lipids of cellular membranes, proteins, and DNA. In nuclear and mitochondrial DNA, 8-hydroxy-2' -deoxyguanosine (8-OHdG) or 8-oxo-7,8-dihydro-2' -deoxyguanosine (8-oxodG) is one of the predominant forms of free radical-induced oxidative lesions, and has therefore been widely used as a biomarker for oxidative stress and carcinogenesis. Studies showed that urinary 8-OHdG is a good biomarker for risk assessment of various cancers and degenerative diseases. The most widely used method of quantitative analysis is high-performance liquid chromatography (HPLC) with electrochemical detection (EC), gas chromatography-mass spectrometry (GC-MS), and HPLC tandem mass spectrometry. In order to resolve the methodological problems encountered in measuring quantitatively 8-OHdG, the European Standards Committee for Oxidative DNA Damage was set up in 1997 to resolve the artifactual oxidation problems during the procedures of isolation and purification of oxidative DNA products. The biomarker 8-OHdG or 8-oxodG has been a pivotal marker for measuring the effect of endogenous oxidative damage to DNA and as a factor of initiation and promotion of carcinogenesis. The biomarker has been used to estimate the DNA damage in humans after exposure to cancer-causing agents, such as tobacco smoke, asbestos fibers, heavy metals, and polycyclic aromatic hydrocarbons. In recent years, 8-OHdG has been used widely in many studies not only as a biomarker for the measurement of endogenous oxidative DNA damage but also as a risk factor for many diseases including cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness.

              This paper reviews the body of evidence that major depression is accompanied by a decreased antioxidant status and by induction of oxidative and nitrosative (IO&NS) pathways. Major depression is characterized by significantly lower plasma concentrations of a number of key antioxidants, such as vitamin E, zinc and coenzyme Q10, and a lowered total antioxidant status. Lowered antioxidant enzyme activity, e.g. glutathione peroxidase (GPX), is another hallmark of depression. The abovementioned lowered antioxidant capacity may impair protection against reactive oxygen species (ROS), causing damage to fatty acids, proteins and DNA by oxidative and nitrosative stress (O&NS). Increased ROS in depression is demonstrated by increased levels of plasma peroxides and xanthine oxidase. Damage caused by O&NS is shown by increased levels of malondialdehyde (MDA), a by-product of polyunsaturated fatty acid peroxidation and arachidonic acid; and increased 8-hydroxy-2-deoxyguanosine, indicating oxidative DNA damage. There is also evidence in major depression, that O&NS may have changed inactive autoepitopes to neoantigens, which have acquired immunogenicity and serve as triggers to bypass immunological tolerance, causing (auto)immune responses. Thus, depression is accompanied by increased levels of plasma IgG antibodies against oxidized LDL; and increased IgM-mediated immune responses against membrane fatty acids, like phosphatidyl inositol (Pi); oleic, palmitic, and myristic acid; and NO modified amino-acids, e.g. NO-tyrosine, NO-tryptophan and NO-arginine; and NO-albumin. There is a significant association between depression and polymorphisms in O&NS genes, like manganese superoxide dismutase, catalase, and myeloperoxidase. Animal models of depression very consistently show lowered antioxidant defences and activated O&NS pathways in the peripheral blood and the brain. In animal models of depression, antidepressants consistently increase lowered antioxidant levels and normalize the damage caused by O&NS processes. Antioxidants, such as N-acetyl-cysteine, compounds that mimic GPX activity, and zinc exhibit antidepressive effects. This paper reviews the pathways by which lowered antioxidants and O&NS may contribute to depression, and the (neuro)degenerative processes that accompany that illness. It is concluded that aberrations in O&NS pathways are--together with the inflammatory processes--key components of depression. All in all, the results suggest that depression belongs to the spectrum of (neuro)degenerative disorders. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Psychoneuroendocrinology
                Psychoneuroendocrinology
                Elsevier BV
                03064530
                May 2023
                May 2023
                : 151
                : 106078
                Article
                10.1016/j.psyneuen.2023.106078
                36931055
                c1bbfb77-b461-422e-83cc-243e2e81c021
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article