Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Persistence of microbiological hazards in food and feed production and processing environments

      research-article
      EFSA Panel on Biological Hazards (BIOHAZ) , , , , , , , , , , , , , , , , , , , , , , , , ,
      EFSA Journal
      John Wiley and Sons Inc.
      cleaning and disinfection, Cronobacter sakazakii, food processing, interventions, Listeria monocytogenes, Persistence, risk factors, Salmonella enterica, subtypes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well‐designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a ‘seek‐and‐destroy’ approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom‐up and top‐down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.

          Related collections

          Most cited references467

          • Record: found
          • Abstract: found
          • Article: not found

          Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity

          Microbial pathogenesis studies are typically performed with reference strains, thereby overlooking microbial intra-species virulence heterogeneity. Here we integrated human epidemiological and clinical data with bacterial population genomics to harness the biodiversity of the model foodborne pathogen Listeria monocytogenes and decipher the basis of its neural and placental tropisms. Taking advantage of the clonal structure of this bacterial species, we identify clones epidemiologically associated with either food or human central nervous system (CNS) and maternal-neonatal (MN) listeriosis. The latter are also most prevalent in patients without immunosuppressive comorbidities. Strikingly, CNS and MN clones are hypervirulent in a humanized mouse model of listeriosis. By integrating epidemiological data and comparative genomics, we uncovered multiple novel putative virulence factors and demonstrated experimentally the contribution of the first gene cluster mediating Listeria monocytogenes neural and placental tropisms. This study illustrates the exceptional power of harnessing microbial biodiversity to identify clinically relevant microbial virulence attributes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health.

            Over the last 10 to 15 years, increasing evidence suggests that persistence of Listeria monocytogenes in food processing plants for years or even decades is an important factor in the transmission of this foodborne pathogen and the root cause of a number of human listeriosis outbreaks. L. monocytogenes persistence in other food-associated environments (e.g., farms and retail establishments) may also contribute to food contamination and transmission of the pathogen to humans. Although L. monocytogenes persistence is typically identified through isolation of a specific molecular subtype from samples collected in a given environment over time, formal (statistical) criteria for identification of persistence are undefined. Environmental factors (e.g., facilities and equipment that are difficult to clean) have been identified as key contributors to persistence; however, the mechanisms are less well understood. Although some researchers have reported that persistent strains possess specific characteristics that may facilitate persistence (e.g., biofilm formation and better adaptation to stress conditions), other researchers have not found significant differences between persistent and nonpersistent strains in the phenotypic characteristics that might facilitate persistence. This review includes a discussion of our current knowledge concerning some key issues associated with the persistence of L. monocytogenes, with special focus on (i) persistence in food processing plants and other food-associated environments, (ii) persistence in the general environment, (iii) phenotypic and genetic characteristics of persistent strains, (iv) niches, and (v) public health and economic implications of persistence. Although the available data clearly indicate that L. monocytogenes persistence at various stages of the food chain contributes to contamination of finished products, continued efforts to quantitatively integrate data on L. monocytogenes persistence (e.g., meta-analysis or quantitative microbial risk assessment) will be needed to advance our understanding of persistence of this pathogen and its economic and public health impacts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A 100-Year Review: Mastitis detection, management, and prevention

              Mastitis is the most frequent disease of dairy cows and has well-recognized detrimental effects on animal wellbeing and dairy farm profitability. Since the beginning of modern dairy farming, producers have sought effective methods to minimize the occurrence of mastitis in their herds. The objective of this paper is to review and highlight important advances in detection, management, and prevention of mastitis that have occurred since the first volume of the Journal of Dairy Science was published in 1917. Initial research efforts were directed at understanding the nature of pathogenic bacteria that were responsible for most intramammary infections. For decades, researchers worked to identify effective strategies to control mastitis caused by Streptococcus agalactiae and Staphylococcus aureus. To develop successful control programs, mastitis workers first had to identify mechanisms of infection, define the clinical and subclinical states of the disease, discover appropriate screening tests, determine likely points of exposure, identify pathogen-specific characteristics, and develop effective procedures for machine milking. Pioneering researchers eventually recognized that mastitis control was based on preventing new infections from occurring in healthy cows and reducing the duration that cows remained infected. Development of a control program that incorporated post-milking teat dipping, hygienic milking procedures, and strategic use of antibiotic therapy at dry-off resulted in widespread control of contagious pathogens. As herd management changed, researchers were tasked with defining control of mastitis caused by opportunistic pathogens originating from environmental sources. As mastitis pathogens have evolved, researchers have sought to define antimicrobial usage that will maintain animal wellbeing while minimizing unnecessary usage. During the last century, tremendous significant advances in mastitis control have been made but changing herd structure and more rigorous processor standards ensure that mastitis will remain an important subject focus of future research.
                Bookmark

                Author and article information

                Contributors
                biohaz@efsa.europa.eu
                Journal
                EFSA J
                EFSA J
                10.1002/(ISSN)1831-4732
                EFS2
                EFSA Journal
                John Wiley and Sons Inc. (Hoboken )
                1831-4732
                19 January 2024
                January 2024
                : 22
                : 1 ( doiID: 10.1002/efs2.v22.1 )
                : e8521
                Author notes
                [*] [* ] Correspondence: biohaz@ 123456efsa.europa.eu
                Article
                EFS28521
                10.2903/j.efsa.2024.8521
                10797485
                c1d77503-f974-4764-ae79-1534e37c2430
                © 2024 European Food Safety Authority. EFSA Journal published by Wiley‐VCH GmbH on behalf of European Food Safety Authority.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

                History
                Page count
                Figures: 35, Tables: 10, Pages: 114, Words: 81298
                Categories
                Scientific Opinion
                Scientific Opinion
                Custom metadata
                2.0
                January 2024
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.6 mode:remove_FC converted:19.01.2024

                cleaning and disinfection,cronobacter sakazakii,food processing,interventions,listeria monocytogenes,persistence,risk factors,salmonella enterica,subtypes

                Comments

                Comment on this article