42
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Founder Strains of the Collaborative Cross Express a Complex Combination of Advantageous and Deleterious Traits for Male Reproduction

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Surveys of inbred strains of mice are standard approaches to determine the heritability and range of phenotypic variation for biomedical traits. In addition, they may lead to the identification of novel phenotypes and models of human disease. Surprisingly, male reproductive phenotypes are among the least-represented traits in the Mouse Phenome Database. Here we report the results of a broad survey of the eight founder inbred strains of both the Collaborative Cross (CC) and the Diversity Outbred populations, two new mouse resources that are being used as platforms for systems genetics and sources of mouse models of human diseases. Our survey includes representatives of the three main subspecies of the house mice and a mix of classical and wild-derived inbred strains. In addition to standard staples of male reproductive phenotyping such as reproductive organ weights, sperm counts, and sperm morphology, our survey includes sperm motility and the first detailed survey of testis histology. As expected for such a broad survey, heritability varies widely among traits. We conclude that although all eight inbred strains are fertile, most display a mix of advantageous and deleterious male reproductive traits. The CAST/EiJ strain is an outlier, with an unusual combination of deleterious male reproductive traits including low sperm counts, high levels of morphologically abnormal sperm, and poor motility. In contrast, sperm from the PWK/PhJ and WSB/EiJ strains had the greatest percentages of normal morphology and vigorous motility. Finally, we report an abnormal testis phenotype that is highly heritable and restricted to the WSB/EiJ strain. This phenotype is characterized by the presence of a large, but variable, number of vacuoles in at least 10% of the seminiferous tubules. The onset of the phenotype between 2 and 3 wk of age is temporally correlated with the formation of the blood-testis barrier. We speculate that this phenotype may play a role in high rates of extinction in the CC project and in the phenotypes associated with speciation in genetic crosses that use the WSB/EiJ strain as representative of the Mus muculus domesticus subspecies.

          Most cited references50

          • Record: found
          • Abstract: not found
          • Book: not found

          Introduction to Quantitative Genetics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biology of infertility: research advances and clinical challenges.

            Reproduction is required for the survival of all mammalian species, and thousands of essential 'sex' genes are conserved through evolution. Basic research helps to define these genes and the mechanisms responsible for the development, function and regulation of the male and female reproductive systems. However, many infertile couples continue to be labeled with the diagnosis of idiopathic infertility or given descriptive diagnoses that do not provide a cause for their defect. For other individuals with a known etiology, effective cures are lacking, although their infertility is often bypassed with assisted reproductive technologies (ART), some accompanied by safety or ethical concerns. Certainly, progress in the field of reproduction has been realized in the twenty-first century with advances in the understanding of the regulation of fertility, with the production of over 400 mutant mouse models with a reproductive phenotype and with the promise of regenerative gonadal stem cells. Indeed, the past six years have witnessed a virtual explosion in the identification of gene mutations or polymorphisms that cause or are linked to human infertility. Translation of these findings to the clinic remains slow, however, as do new methods to diagnose and treat infertile couples. Additionally, new approaches to contraception remain elusive. Nevertheless, the basic and clinical advances in the understanding of the molecular controls of reproduction are impressive and will ultimately improve patient care.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spermatogenic cells of the prepuberal mouse: isolation and morphological characterization

              A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                13 October 2015
                December 2015
                : 5
                : 12
                : 2671-2683
                Affiliations
                [* ]Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
                []Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
                []Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
                [§ ]Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599
                [** ]Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
                [†† ]Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
                Author notes
                [1]

                These authors have contributed equally to this work.

                [2 ]Corresponding authors: University of North Carolina, CB# 7545, Chapel Hill, NC 27599. E-mail: dao@ 123456med.unc.edu ; and University of North Carolina, CB# 7264, Chapel Hill, NC 27599. E-mail: fernando@ 123456med.unc.edu
                Article
                GGG_020172
                10.1534/g3.115.020172
                4683640
                26483008
                c1f41575-f298-4712-b74f-219e646efe4a
                Copyright © 2015 Odet et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 July 2015
                : 01 October 2015
                Page count
                Pages: 13
                Categories
                Investigations

                Genetics
                sperm,motility,vacuole,collaborative cross
                Genetics
                sperm, motility, vacuole, collaborative cross

                Comments

                Comment on this article