5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vitamin K2 has been shown to exert remarkable anticancer activity. However, the detailed mechanism remains unclear. Here, our study was the first to show that Vitamin K2 significantly promoted the glycolysis in bladder cancer cells by upregulating glucose consumption and lactate production, whereas inhibited TCA cycle by reducing the amounts of Acetyl-CoA. Moreover, suppression of PI3K/AKT and HIF-1α attenuated Vitamin K2-increased glucose consumption and lactate generation, indicating that Vitamin K2 promotes PI3K/AKT and HIF-1α-mediated glycolysis in bladder cancer cells. Importantly, upon glucose limitation, Vitamin K2-upregulated glycolysis markedly induced metabolic stress, along with AMPK activation and mTORC1 pathway suppression, which subsequently triggered AMPK-dependent autophagic cell death. Intriguingly, glucose supplementation profoundly abrogated AMPK activation and rescued bladder cancer cells from Vitamin K2-triggered autophagic cell death. Furthermore, both inhibition of PI3K/AKT/HIF-1α and attenuation of glycolysis significantly blocked Vitamin K2-induced AMPK activation and subsequently prevented autophagic cell death. Collectively, these findings reveal that Vitamin K2 could induce metabolic stress and trigger AMPK-dependent autophagic cell death in bladder cancer cells by PI3K/AKT/HIF-1α-mediated glycolysis promotion.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Akt stimulates aerobic glycolysis in cancer cells.

          Cancer cells frequently display high rates of aerobic glycolysis in comparison to their nontransformed counterparts, although the molecular basis of this phenomenon remains poorly understood. Constitutive activity of the serine/threonine kinase Akt is a common perturbation observed in malignant cells. Surprisingly, although Akt activity is sufficient to promote leukemogenesis in nontransformed hematopoietic precursors and maintenance of Akt activity was required for rapid disease progression, the expression of activated Akt did not increase the proliferation of the premalignant or malignant cells in culture. However, Akt stimulated glucose consumption in transformed cells without affecting the rate of oxidative phosphorylation. High rates of aerobic glycolysis were also identified in human glioblastoma cells possessing but not those lacking constitutive Akt activity. Akt-expressing cells were more susceptible than control cells to death after glucose withdrawal. These data suggest that activation of the Akt oncogene is sufficient to stimulate the switch to aerobic glycolysis characteristic of cancer cells and that Akt activity renders cancer cells dependent on aerobic glycolysis for continued growth and survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.

            Compared to normal cells, cancer cells strongly upregulate glucose uptake and glycolysis to give rise to increased yield of intermediate glycolytic metabolites and the end product pyruvate. Moreover, glycolysis is uncoupled from the mitochondrial tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in cancer cells. Consequently, the majority of glycolysis-derived pyruvate is diverted to lactate fermentation and kept away from mitochondrial oxidative metabolism. This metabolic phenotype is known as the Warburg effect. While it has become widely accepted that the glycolytic intermediates provide essential anabolic support for cell proliferation and tumor growth, it remains largely elusive whether and how the Warburg metabolic phenotype may play a role in tumor progression. We hereby review the cause and consequence of the restrained oxidative metabolism, in particular in the context of tumor metastasis. Cells change or lose their extracellular matrix during the metastatic process. Inadequate/inappropriate matrix attachment generates reactive oxygen species (ROS) and causes a specific type of cell death, termed anoikis, in normal cells. Although anoikis is a barrier to metastasis, cancer cells have often acquired elevated threshold for anoikis and hence heightened metastatic potential. As ROS are inherent byproducts of oxidative metabolism, forced stimulation of glucose oxidation in cancer cells raises oxidative stress and restores cells' sensitivity to anoikis. Therefore, by limiting the pyruvate flux into mitochondrial oxidative metabolism, the Warburg effect enables cancer cells to avoid excess ROS generation from mitochondrial respiration and thus gain increased anoikis resistance and survival advantage for metastasis. Consistent with this notion, pro-metastatic transcription factors HIF and Snail attenuate oxidative metabolism, whereas tumor suppressor p53 and metastasis suppressor KISS1 promote mitochondrial oxidation. Collectively, these findings reveal mitochondrial oxidative metabolism as a critical suppressor of metastasis and justify metabolic therapies for potential prevention/intervention of tumor metastasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis.

              The serine/threonine kinase Akt - also known as protein kinase B (PKB) - has emerged as one of the most frequently activated protein kinases in human cancer. In fact, most, if not all, tumors ultimately find a way to activate this important kinase. As such, Akt activation constitutes a hallmark of most cancer cells, and such ubiquity presumably connotes important roles in tumor genesis and/or progression. Likewise, the hypermetabolic nature of cancer cells and their increased reliance on "aerobic glycolysis", as originally described by Otto Warburg and colleagues, are considered metabolic hallmarks of cancer cells. In this review, we address the specific contributions of Akt activation to the signature metabolic features of cancer cells, including the so-called "Warburg effect".
                Bookmark

                Author and article information

                Contributors
                leonard19800318@hust.edu.cn
                lhong@mail.hust.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 May 2020
                7 May 2020
                2020
                : 10
                : 7714
                Affiliations
                [1 ]ISNI 0000 0004 0368 7223, GRID grid.33199.31, Department of Biology, College of Life Science and Technology, Huazhong University of Science and Technology, ; 430074 Wuhan, China
                [2 ]ISNI 0000 0004 0368 7223, GRID grid.33199.31, Tongji Medical College, Huazhong University of Science and Technology, ; 430030 Wuhan, China
                [3 ]ISNI 0000 0004 0368 7223, GRID grid.33199.31, Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, ; 430022 Wuhan, China
                [4 ]Global Public Health (Biology), Pre-Medicine Track, New York University College of Arts & Science 2021, 10003 New York, USA
                Article
                64880
                10.1038/s41598-020-64880-x
                7206016
                32382009
                c23834a8-079e-4350-b192-186f907931f3
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 December 2019
                : 20 April 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                cancer metabolism,apoptosis,autophagy
                Uncategorized
                cancer metabolism, apoptosis, autophagy

                Comments

                Comment on this article