Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The PB2 mutation with lysine at 627 enhances the pathogenicity of avian influenza (H7N9) virus which belongs to a non-zoonotic lineage

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel avian-origin influenza A (H7N9) virus emerged in China in 2013 and has caused zoonotic disease in over 1123 persons with an overall mortality around 30%. Amino acid changes at the residues 591, 627 and 701 of polymerase basic protein 2 (PB2) have been found frequently in the human H7N9 isolates but not in viruses isolated from avian species. We have recently identified a cluster of H7N9 viruses in ducks which circulated in China prior to the first recognition of zoonotic disease in 2013. These duck viruses have genetic background distinct from the zoonotic H7N9 lineage. We found that the introduction of PB2 mutation with K at 627 but not K at 591 or N at 701 to the duck H7N9 virus led to increased pathogenicity in mice. We also found that the induction of pro-inflammatory cytokines including TNF-α, IP-10, MCP-1 and MIP-1α were associated with increased severity of infection. We conclude that introduction of the mammalian adaptation mutations into the PB2 gene of duck H7N9 viruses, which are genetically unrelated to the zoonotic H7N9 lineage, can also enhance pathogenicity in mice.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          Human infection with a novel avian-origin influenza A (H7N9) virus.

          Infection of poultry with influenza A subtype H7 viruses occurs worldwide, but the introduction of this subtype to humans in Asia has not been observed previously. In March 2013, three urban residents of Shanghai or Anhui, China, presented with rapidly progressing lower respiratory tract infections and were found to be infected with a novel reassortant avian-origin influenza A (H7N9) virus. We obtained and analyzed clinical, epidemiologic, and virologic data from these patients. Respiratory specimens were tested for influenza and other respiratory viruses by means of real-time reverse-transcriptase-polymerase-chain-reaction assays, viral culturing, and sequence analyses. A novel reassortant avian-origin influenza A (H7N9) virus was isolated from respiratory specimens obtained from all three patients and was identified as H7N9. Sequencing analyses revealed that all the genes from these three viruses were of avian origin, with six internal genes from avian influenza A (H9N2) viruses. Substitution Q226L (H3 numbering) at the 210-loop in the hemagglutinin (HA) gene was found in the A/Anhui/1/2013 and A/Shanghai/2/2013 virus but not in the A/Shanghai/1/2013 virus. A T160A mutation was identified at the 150-loop in the HA gene of all three viruses. A deletion of five amino acids in the neuraminidase (NA) stalk region was found in all three viruses. All three patients presented with fever, cough, and dyspnea. Two of the patients had a history of recent exposure to poultry. Chest radiography revealed diffuse opacities and consolidation. Complications included acute respiratory distress syndrome and multiorgan failure. All three patients died. Novel reassortant H7N9 viruses were associated with severe and fatal respiratory disease in three patients. (Funded by the National Basic Research Program of China and others.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia

            Avian influenza A (H5N1) viruses cause severe disease in humans 1,2 , but the basis for their virulence remains unclear. In vitro and animal studies indicate that high and disseminated viral replication is important for disease pathogenesis 3,4,5 . Laboratory experiments suggest that virus-induced cytokine dysregulation may contribute to disease severity 6,7,8,9 . To assess the relevance of these findings for human disease, we performed virological and immunological studies in 18 individuals with H5N1 and 8 individuals infected with human influenza virus subtypes. Influenza H5N1 infection in humans is characterized by high pharyngeal virus loads and frequent detection of viral RNA in rectum and blood. Viral RNA in blood was present only in fatal H5N1 cases and was associated with higher pharyngeal viral loads. We observed low peripheral blood T-lymphocyte counts and high chemokine and cytokine levels in H5N1-infected individuals, particularly in those who died, and these correlated with pharyngeal viral loads. Genetic characterization of H5N1 viruses revealed mutations in the viral polymerase complex associated with mammalian adaptation and virulence. Our observations indicate that high viral load, and the resulting intense inflammatory responses, are central to influenza H5N1 pathogenesis. The focus of clinical management should be on preventing this intense cytokine response, by early diagnosis and effective antiviral treatment. Supplementary information The online version of this article (doi:10.1038/nm1477) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of the 1918 influenza virus polymerase genes.

              The influenza A viral heterotrimeric polymerase complex (PA, PB1, PB2) is known to be involved in many aspects of viral replication and to interact with host factors, thereby having a role in host specificity. The polymerase protein sequences from the 1918 human influenza virus differ from avian consensus sequences at only a small number of amino acids, consistent with the hypothesis that they were derived from an avian source shortly before the pandemic. However, when compared to avian sequences, the nucleotide sequences of the 1918 polymerase genes have more synonymous differences than expected, suggesting evolutionary distance from known avian strains. Here we present sequence and phylogenetic analyses of the complete genome of the 1918 influenza virus, and propose that the 1918 virus was not a reassortant virus (like those of the 1957 and 1968 pandemics), but more likely an entirely avian-like virus that adapted to humans. These data support prior phylogenetic studies suggesting that the 1918 virus was derived from an avian source. A total of ten amino acid changes in the polymerase proteins consistently differentiate the 1918 and subsequent human influenza virus sequences from avian virus sequences. Notably, a number of the same changes have been found in recently circulating, highly pathogenic H5N1 viruses that have caused illness and death in humans and are feared to be the precursors of a new influenza pandemic. The sequence changes identified here may be important in the adaptation of influenza viruses to humans.
                Bookmark

                Author and article information

                Contributors
                jeffyah@163.com
                ch02mkp@hku.hk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 May 2017
                24 May 2017
                2017
                : 7
                Affiliations
                [1 ]ISNI 0000 0004 0604 5998, GRID grid.452881.2, Department of clinical laboratory, , First people’s hospital of Foshan, ; Foshan, China
                [2 ]ISNI 0000000121742757, GRID grid.194645.b, HKU-Pasteur Research Pole, , School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, ; Hong Kong, China
                [3 ]GRID grid.470124.4, State Key Laboratory of Respiratory Disease, , National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, ; Guangzhou, China
                [4 ]ISNI 0000000121742757, GRID grid.194645.b, Centre of Influenza Research, School of Public Health, , HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, ; Hong Kong, China
                [5 ]State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
                2598
                10.1038/s41598-017-02598-z
                5443809
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized

                Comments

                Comment on this article