19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Finding the biomarkers associated with ASD is extremely helpful to understand the underlying roots of the disorder and can lead to earlier diagnosis and more targeted treatment. Although Deep Neural Networks (DNNs) have been applied in functional magnetic resonance imaging (fMRI) to identify ASD, understanding the data-driven computational decision making procedure has not been previously explored. Therefore, in this work, we address the problem of interpreting reliable biomarkers associated with identifying ASD; specifically, we propose a 2-stage method that classifies ASD and control subjects using fMRI images and interprets the saliency features activated by the classifier. First, we trained an accurate DNN classifier. Then, for detecting the biomarkers, different from the DNN visualization works in computer vision, we take advantage of the anatomical structure of brain fMRI and develop a frequency-normalized sampling method to corrupt images. Furthermore, in the ASD vs. control subjects classification scenario, we provide a new approach to detect and characterize important brain features into three categories. The biomarkers we found by the proposed method are robust and consistent with previous findings in the literature. We also validate the detected biomarkers by neurological function decoding and comparing with the DNN activation maps.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: not found

          Resting state functional magnetic resonance imaging and neural network classified autism and control.

          Although the neurodevelopmental and genetic underpinnings of autism spectrum disorder (ASD) have been investigated, the etiology of the disorder has remained elusive, and clinical diagnosis continues to rely on symptom-based criteria. In this study, to classify both control subjects and a large sample of patients with ASD, we used resting state functional magnetic resonance imaging (rs-fMRI) and a neural network. Imaging data from 312 subjects with ASD and 328 subjects with typical development was downloaded from the multi-center research project. Only subjects under 20 years of age were included in this analysis. Correlation matrices computed from rs-fMRI time-series data were entered into a probabilistic neural network (PNN) for classification. The PNN classified the two groups with approximately 90% accuracy (sensitivity = 92%, specificity = 87%). The accuracy of classification did not differ among the institutes, or with respect to experimental and imaging conditions, sex, handedness, or intellectual level. Medication status and degree of head movement did not affect accuracy values. The present study indicates that an intrinsic connectivity matrix produced from rs-fMRI data could yield a possible biomarker of ASD. These results support the view that altered network connectivity within the brain contributes to the neurobiology of ASD.
            Bookmark

            Author and article information

            Journal
            23 August 2018
            Article
            1808.08296
            c27a5a82-3309-4cb1-af7b-01800c8ee679

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            8 pagers, accepted by MICCAI 2018
            cs.CV cs.AI q-bio.NC

            Computer vision & Pattern recognition,Neurosciences,Artificial intelligence

            Comments

            Comment on this article