20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Acute N-Methyl- D,L-Aspartate Administration Stimulates the Luteinizing Hormone Releasing Hormone Pulse Generator in the Ovine Fetus

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To assess whether fetal luteinizing hormone releasing hormone (LH-RH) neurosecretory neurons have the capacity to respond to an exogenous stimulus, a synthetic excitatory amino acid analogue, N-methyl-D-L-aspartate (NMDA; 15 mg/kg), was given rapidly intravenously to 8 chronically catheterized fetuses (130–142 days of gestation; term 147 ± 3 days). All 8 fetuses exhibited a rise in plasma ovine luteinizing hormone (oLH) and ovine follicle-stimulating hormone (oFSH) within 5 min. The mean maximal increments of oLH (2.25 ± 0.36 ng/ml) and oFSH (1.21 ± 0.32 ng/ml) were significantly greater than in 6 normal saline-injected controls (oLH p < 0.0002; oFSH p < 0.03). The secretion of ovine prolactin (oPRL) and ovine growth hormone (oGH) was unaffected. LH-RH (5 μg) evoked a greater oLH response (p < 0.0009) and a greater oFSH response (p < 0.03) than NMDA (n = 6). Desensitization of the fetal gonadotrope by a potent LH-RH agonist, D-Trp<sup>6</sup>Pro<sup>9</sup>NEt-LH-RH (10 μg/day i.v. × 4 days), abolished the fetal oLH and the oFSH response to NMDA (n = 5). Moreover, D,L-2-amino-5-phosphonovalerate, a specific competitive antagonist for the NMDA receptor, completely inhibited the fetal oLH and oFSH response to NMDA, whereas D-L-2-amino-5-phosphonovalerate alone did not affect the plasma oLH or oFSH levels, the gonadotropin response to LH-RH, or the release of oGH or oPRL (n = 3). In primary ovine fetal pituitary cell cultures, NMDA (10<sup>–10</sup> to 10<sup>–6</sup> M) had no effect on oLH, oFSH, oGH, or oPRL secretion, whereas LH-RH stimulated oLH (10<sup>–8</sup> M; p < 0.0004) and oFSH (10<sup>–8</sup> M; p < 0.0001) release, evidence that NMDA did not have a direct pituitary effect. The results suggest that NMDA induces oLH and oFSH secretion by stimulation of the fetal LH-RH pulse generator and is mediated by central NMDA receptors. Fetal LH and FSH secretion and the response to LH-RH decrease in late gestation in the ovine and human fetus. The relative importance of sex steroid dependent and sex steroid independent central nervous system inhibition in this developmental change is unclear. It appears that central neural inhibition in addition to sex steroid negative feedback contributes to the decrease in fetal gonadotropin concentrations in late gestation. NMDA did not affect fetal oGH or oPRL secretion.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular cloning and characterization of the rat NMDA receptor.

          A complementary DNA encoding the rat NMDA receptor has been cloned and characterized. The single protein encoded by the cDNA forms a receptor-channel complex that has electrophysiological and pharmacological properties characteristic of the NMDA receptor. This protein has a significant sequence similarity to the AMPA/kainate receptors and contains four putative transmembrane segments following a large extracellular domain. The NMDA receptor messenger RNA is expressed in neuronal cells throughout the brain regions, particularly in the hippocampus, cerebral cortex and cerebellum.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Anatomical organization of excitatory amino acid receptors and their pathways

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Excitatory amino acids: function and significance in reproduction and neuroendocrine regulation.

              Excitatory amino acid neurotransmission is an essential component of the neuroendocrine transmission line that regulates anterior pituitary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. Excitatory amino acids (EAAs), such as glutamate and aspartate, are found in large concentrations in presynaptic boutons of a variety of important hypothalamic nuclei, including the arcuate nucleus, the suprachiasmatic nucleus, the supraoptic nucleus, the paraventricular nucleus, and the preoptic area. EAA receptors can be divided into two broad groups, namely, ionotropic and metabotropic receptors. Ionotropic receptors are subdivided into NMDA (N-methyl-D-aspartate), kainate, and AMPA (DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Their main mode of action is by the modulation of Na+, K+, and Ca2+ ion channels. Metabotropic receptors, on the other hand, act by a G-protein-stimulated release of intracellular Ca2+ or modulation of adenylate cyclase activity. The different EAA receptor subtypes are found in a variety of areas of the hypothalamus and the brain. In a variety of species, the administration of glutamate, NMDA, or kainate leads to LH release mediated through the stimulation of hypothalamic gonadotropin hormone-releasing hormone (GnRH) release. The major site of NMDA action appears to be the preoptic area--where GnRH cell bodies reside. AMPA and kainate appear to act primarily at the arcuate nucleus/median eminence, the site of GnRH nerve terminals. NMDA may also act upon noradrenergic neurons in the locus coeruleus to influence hypothalamic GnRH release. The steroid-induced LH surge in ovariectomized animals and the preovulatory surge of LH in cycling animals and in pregnant mare's serum gonadotropic-primed animals are blocked by the NMDA antagonist MK801 and the AMPA/kainate antagonist DNQX. MK801 also suppressed FSH surges in most instances, whereas DNQX had no effect on FSH surges. In the ovariectomized female rat, both the NMDA antagonist AP5 and the AMPA/kainate antagonist DNQX, lowered mean LH levels, LH pulse amplitude, and LH pulse frequency. Activation of NMDA receptors advanced the time of vaginal opening in the immature female rat, while kainate and DNQX were without effect. Gonadal steroid removal (castration) did not alter NMDA receptor levels or affinity in the hypothalamus of female or male rats. Likewise, steroid replacement to castrate rats did not affect hypothalamic NMDA receptor levels or NMDA R1 mRNA levels. Similarly, NMDA and kainate receptor levels in the hypothalamus did not change during the time of puberty in the female rat. In contrast, AMPA receptor (GluR1) immunoreactive levels in the magnocellular preoptic area (mPOA), the arcuate nucleus (ARC), and the suprachiasmatic nucleus (SCN) were found to be markedly elevated during the time of the LH surge in estradiol-progesterone-treated castrate rats compared to those of the vehicle-only-treated castrate rat. The release rates of glutamate and aspartate in the POA were found to be significantly elevated during the steroid-induced LH surge in the ovariectomized adult rat.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Journal
                HRE
                Horm Res Paediatr
                10.1159/issn.1663-2818
                Hormone Research in Paediatrics
                S. Karger AG
                1663-2818
                1663-2826
                1999
                January 1999
                31 March 1999
                : 51
                : 1
                : 25-30
                Affiliations
                Department of Pediatrics, University of California, San Francisco, Calif., USA
                Article
                23309 Horm Res 1999;51:25–30
                10.1159/000023309
                10095166
                c2cdeff3-587d-447c-80ca-f561c88e3758
                © 1999 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 5, References: 35, Pages: 6
                Categories
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Ovine fetus,N-methyl-D-L-aspartate,Luteinizing hormone releasing hormone,Gonadotropins

                Comments

                Comment on this article