19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Programmed Cell Death Ligand-1 (PD-L1/CD274) in the Development of Graft versus Host Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Programmed cell death ligand-1 (PD-L1/CD274) is an immunomodulatory molecule involved in cancer and complications of bone marrow transplantation, such as graft rejection and graft-versus-host disease. The present study was designed to assess the dynamic expression of this molecule after hematopoietic stem cell transplantation in relation to acute graft-versus-host disease. Female BALB/c mice were conditioned with busulfan and cyclophosphamide and transplanted with either syngeneic or allogeneic (male C57BL/6 mice) bone marrow and splenic cells. The expression of PD-L1 was evaluated at different time points employing qPCR, western blot and immunohistochemistry. Allogeneic- but not syngeneic-transplanted animals exhibited a marked up-regulation of PD-L1 expression in the muscle and kidney, but not the liver, at days 5 and 7 post transplantation. In mice transplanted with allogeneic bone marrow cells, the enhanced expression of PD-L1 was associated with high serum levels of IFNγ and TNFα at corresponding intervals. Our findings demonstrate that PD-L1 is differently induced and expressed after allogeneic transplantation than it is after syngeneic transplantation, and that it is in favor of target rather than non-target organs at the early stages of acute graft-versus-host disease. This is the first study to correlate the dynamics of PD-L1 at the gene-, protein- and activity levels with the early development of acute graft-versus-host disease. Our results suggest that the higher expression of PD-L1 in the muscle and kidney (non-target tissues) plays a protective role in skeletal muscle during acute graft-versus-host disease.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Graft-versus-host disease.

          Haemopoietic-cell transplantation (HCT) is an intensive therapy used to treat high-risk haematological malignant disorders and other life-threatening haematological and genetic diseases. The main complication of HCT is graft-versus-host disease (GVHD), an immunological disorder that affects many organ systems, including the gastrointestinal tract, liver, skin, and lungs. The number of patients with this complication continues to grow, and many return home from transplant centres after HCT requiring continued treatment with immunosuppressive drugs that increases their risks for serious infections and other complications. In this Seminar, we review our understanding of the risk factors and causes of GHVD, the cellular and cytokine networks implicated in its pathophysiology, and current strategies to prevent and treat the disease. We also summarise supportive-care measures that are essential for management of this medically fragile population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production.

            Programmed death-1 ligand (PD-L)1 and PD-L2 are ligands for programmed death-1 (PD-1), a member of the CD28/CTLA4 family expressed on activated lymphoid cells. PD-1 contains an immunoreceptor tyrosine-based inhibitory motif and mice deficient in PD-1 develop autoimmune disorders suggesting a defect in peripheral tolerance. Human PD-L1 and PD-L2 are expressed on immature dendritic cells (iDC) and mature dendritic cells (mDC), IFN-gamma-treated monocytes, and follicular dendritic cells. Using mAbs, we show that blockade of PD-L2 on dendritic cells results in enhanced T cell proliferation and cytokine production, including that of IFN-gamma and IL-10, while blockade of PD-L1 results in similar, more modest, effects. Blockade of both PD-L1 and PD-L2 showed an additive effect. Both whole mAb and Fab enhanced T cell activation, showing that PD-L1 and PD-L2 function to inhibit T cell activation. Enhancement of T cell activation was most pronounced with weak APC, such as iDCs and IL-10-pretreated mDCs, and less pronounced with strong APC such as mDCs. These data are consistent with the hypothesis that iDC have a balance of stimulatory vs inhibitory molecules that favors inhibition, and indicate that PD-L1 and PD-L2 contribute to the poor stimulatory capacity of iDC. PD-L1 expression differs from PD-L2 in that PD-L1 is expressed on activated T cells, placental trophoblasts, myocardial endothelium, and cortical thymic epithelial cells. In contrast, PD-L2 is expressed on placental endothelium and medullary thymic epithelial cells. PD-L1 is also highly expressed on most carcinomas but minimally expressed on adjacent normal tissue suggesting a role in attenuating antitumor immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Graft-versus-host disease.

              Allogeneic haematopoietic stem-cell transplantation (SCT) is a curative therapy for haematological malignancies and inherited disorders of blood cells, such as sickle-cell anaemia. Mature alphabeta T cells that are contained in the allografts reconstitute T-cell immunity and can eradicate malignant cells in the recipient. Unfortunately, these T cells recognize the recipient as 'non-self' and employ a wide range of immune mechanisms to attack recipient tissues in a process known as graft-versus-host disease (GVHD). The full therapeutic potential of allogeneic haematopoietic SCT will not be realized until approaches to minimize GVHD, while maintaining the positive contributions of donor T cells, are developed. This Review focuses on research in mouse models pursued to achieve this goal.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                4 April 2013
                : 8
                : 4
                : e60367
                Affiliations
                [1 ]Department of Laboratory Medicine, Division of Clinical Research Center, Experimental Cancer Medicine, Karolinska Institutet, Stockholm, Sweden
                [2 ]Department of Laboratory Medicine, The Unite of Morphologic Phenotype Analysis, Karolinska Institutet and Karolinska University Hospital-Huddinge, Stockholm, Sweden
                [3 ]Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
                [4 ]Clinical Research Center (ECM, KFC, Novum), Karolinska University Hospital-Huddinge, Stockholm, Sweden
                [5 ]Department of Oncology and Pathology, Cancer Center Karolinska (CCK), Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
                Children’s Hospital Boston/Harvard Medical School, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Revised the manuscript: JL MH. Conceived and designed the experiments: MAV JL MH AM. Performed the experiments: HAC BS SAH MF RK. Wrote the paper: HAC BS MAV SAH MF RK MH AM.

                Article
                PONE-D-13-00212
                10.1371/journal.pone.0060367
                3617218
                23593203
                c2e8b237-abe7-4943-a5af-154afd67abcf
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 December 2012
                : 26 February 2013
                Page count
                Pages: 7
                Funding
                The authors would like to acknowledge grants obtained from The Swedish Cancer Foundation (CF) and the Swedish Childhood Cancer Society (BCF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Molecular Genetics
                Gene Expression
                Developmental Biology
                Stem Cells
                Hematopoietic Stem Cells
                Genetics
                Gene Expression
                Model Organisms
                Animal Models
                Mouse
                Molecular Cell Biology
                Cellular Types
                Stem Cells
                Hematopoietic Stem Cells
                Gene Expression
                Medicine
                Clinical Immunology
                Hematology
                Bone Marrow and Stem Cell Transplantation
                Non-Clinical Medicine
                Oncology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article