10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Immediate and deferred epigenomic signatures of in vivo neuronal activation in mouse hippocampus

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activity-driven transcription plays an important role in many brain processes, including those underlying memory and epilepsy. Here, we combine the genetic tagging of neuronal nuclei and ribosomes with various sequencing-based techniques to investigate the transcriptional and chromatin changes occurring at hippocampal excitatory neurons upon synchronous activation during status epilepticus and sparse activation during novel context exploration. The transcriptional outburst is associated with a dramatic increase in chromatin accessibility of activity-regulated genes and enhancers, de novo binding of activity-regulated transcription factors, augmented promoter-enhancer interactions, and the formation of gene loops that bring together the TSS and TTS of strongly induced genes and may sustain the fast re-loading of RNAPII complexes. Remarkably, some chromatin occupancy changes and interactions, particularly those driven by AP1, remain long after neuronal activation and may underlie the changes in neuronal responsiveness and circuit connectivity observed in these neuroplasticity paradigms thereby contributing to metaplasticity in the adult brain.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes.

          Neuronal activity causes the rapid expression of immediate early genes that are crucial for experience-driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next-generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIβ (Topo IIβ), and knockdown of Topo IIβ attenuates both DSB formation and early-response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons

            Production of mRNA depends critically on the rate of RNA polymerase II (Pol II) elongation. To dissect Pol II dynamics in mouse ES cells, we inhibited Pol II transcription at either initiation or promoter-proximal pause escape with Triptolide or Flavopiridol, and tracked Pol II kinetically using GRO-seq. Both inhibitors block transcription of more than 95% of genes, showing that pause escape, like initiation, is a ubiquitous and crucial step within the transcription cycle. Moreover, paused Pol II is relatively stable, as evidenced from half-life measurements at ∼3200 genes. Finally, tracking the progression of Pol II after drug treatment establishes Pol II elongation rates at over 1000 genes. Notably, Pol II accelerates dramatically while transcribing through genes, but slows at exons. Furthermore, intergenic variance in elongation rates is substantial, and is influenced by a positive effect of H3K79me2 and negative effects of exon density and CG content within genes. DOI: http://dx.doi.org/10.7554/eLife.02407.001
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              seqMINER: an integrated ChIP-seq data interpretation platform

              In a single experiment, chromatin immunoprecipitation combined with high throughput sequencing (ChIP-seq) provides genome-wide information about a given covalent histone modification or transcription factor occupancy. However, time efficient bioinformatics resources for extracting biological meaning out of these gigabyte-scale datasets are often a limiting factor for data interpretation by biologists. We created an integrated portable ChIP-seq data interpretation platform called seqMINER, with optimized performances for efficient handling of multiple genome-wide datasets. seqMINER allows comparison and integration of multiple ChIP-seq datasets and extraction of qualitative as well as quantitative information. seqMINER can handle the biological complexity of most experimental situations and proposes methods to the user for data classification according to the analysed features. In addition, through multiple graphical representations, seqMINER allows visualization and modelling of general as well as specific patterns in a given dataset. To demonstrate the efficiency of seqMINER, we have carried out a comprehensive analysis of genome-wide chromatin modification data in mouse embryonic stem cells to understand the global epigenetic landscape and its change through cellular differentiation.
                Bookmark

                Author and article information

                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Science and Business Media LLC
                1097-6256
                1546-1726
                September 9 2019
                Article
                10.1038/s41593-019-0476-2
                6875776
                31501571
                c2f1c446-5801-45ad-87c2-613c94c19300
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article