16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adiponectin in Relation to Coronary Plaque Characteristics on Radiofrequency Intravascular Ultrasound and Cardiovascular Outcome

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Prospective data on the associations of adiponectin with in-vivo measurements of degree, phenotype and vulnerability of coronary atherosclerosis are currently lacking.

          Objective

          To investigate the association of plasma adiponectin with virtual histology intravascular ultrasound (VH-IVUS)-derived measures of atherosclerosis and with major adverse cardiac events (MACE) in patients with established coronary artery disease.

          Methods

          In 2008-2011, VH-IVUS of a non-culprit non-stenotic coronary segment was performed in 581 patients undergoing coronary angiography for acute coronary syndrome (ACS, n = 318) or stable angina pectoris (SAP, n = 263) from the atherosclerosis-intravascular ultrasound (ATHEROREMO-IVUS) study. Blood was sampled prior to coronary angiography. Coronary plaque burden, tissue composition, high-risk lesions, including VH-IVUS-derived thin-cap fibroatheroma (TCFA), were assessed. All-cause mortality, ACS, unplanned coronary revascularization were registered during a 1-year-follow-up. All statistical tests were two-tailed and p-values < 0.05 were considered statistically significant.

          Results

          In the full cohort, adiponectin levels were not associated with plaque burden, nor with the various VH-tissue types. In SAP patients, adiponectin levels (median[IQR]: 2.9(1.9-3.9) µg/mL) were positively associated with VH-IVUS derived TCFA lesions, (OR[95%CI]: 1.78[1.06-3.00], p = 0.030), and inversely associated with lesions with minimal luminal area (MLA) ≤ 4.0 mm 2 (OR[95%CI]: 0.55[0.32-0.92], p = 0.025). In ACS patients, adiponectin levels (median[IQR]: 2.9 [1.8-4.1] µg/mL)were not associated with plaque burden, nor with tissue components. Positive association of adiponectin with death was present in the full cohort (HR[95%CI]: 2.52[1.02-6.23], p = 0.045) and (borderline) in SAP patients (HR[95%CI]: 8.48[0.92-78.0], p = 0.058). In ACS patients, this association lost statistical significance after multivariable adjustment (HR[95%CI]: 1.87[0.67-5.19], p = 0.23).

          Conclusion

          In the full cohort, adiponectin levels were associated with death but not with VH-IVUS atherosclerosis measures. In SAP patients, adiponectin levels were associated with VH-IVUS-derived TCFA lesions. Altogether, substantial role for adiponectin in plaque vulnerability remains unconfirmed.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Plasma adiponectin levels and risk of myocardial infarction in men.

          Adiponectin, a recently discovered adipocyte-derived peptide, is involved in the regulation of insulin sensitivity and lipid oxidation and, purportedly, in the development of atherosclerosis and coronary heart disease in humans. To assess prospectively whether plasma adiponectin concentrations are associated with risk of myocardial infarction (MI). Nested case-control study among 18 225 male participants of the Health Professionals Follow-up Study aged 40 to 75 years who were free of diagnosed cardiovascular disease at the time of blood draw (1993-1995). During 6 years of follow-up through January 31, 2000, 266 men subsequently developed nonfatal MI or fatal coronary heart disease. Using risk set sampling, controls were selected in a 2:1 ratio matched for age, date of blood draw, and smoking status (n = 532). Incidence of nonfatal MI and fatal coronary heart disease by adiponectin level. After adjustment for matched variables, participants in the highest compared with the lowest quintile of adiponectin levels had a significantly decreased risk of MI (relative risk [RR], 0.39; 95% confidence interval [CI], 0.23-0.64; P for trend <.001). Additional adjustment for family history of MI, body mass index, alcohol consumption, physical activity, and history of diabetes and hypertension did not substantively affect this relationship (RR, 0.41; 95% CI, 0.24-0.70; P for trend <.001). Further adjustment for hemoglobin A1c or C-reactive protein levels also had little impact, but additional adjustment for low- and high-density lipoprotein cholesterol levels modestly attenuated this association (RR, 0.56; 95% CI, 0.32-0.99; P for trend =.02). High plasma adiponectin concentrations are associated with lower risk of MI in men. This relationship can be only partly explained by differences in blood lipids and is independent of inflammation and glycemic status.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adiponectin as an anti-inflammatory factor.

            Obesity is characterized by low-grade systemic inflammation. Adiponectin is an adipose tissue-derived hormone, which is downregulated in obesity. Adiponectin displays protective actions on the development of various obesity-linked diseases. Several clinical studies demonstrate the inverse relationship between plasma adiponectin levels and several inflammatory markers including C-reactive protein. Adiponectin attenuates inflammatory responses to multiple stimuli by modulating signaling pathways in a variety of cell types. The anti-inflammatory properties of adiponectin may be a major component of its beneficial effects on cardiovascular and metabolic disorders including atherosclerosis and insulin resistance. In this review, we focus on the role of adiponectin in regulation of inflammatory response and discuss its potential as an anti-inflammatory marker.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disruption of adiponectin causes insulin resistance and neointimal formation.

              The adipocyte-derived hormone adiponectin has been proposed to play important roles in the regulation of energy homeostasis and insulin sensitivity, and it has been reported to exhibit putative antiatherogenic properties in vitro. In this study we generated adiponectin-deficient mice to directly investigate whether adiponectin has a physiological protective role against diabetes and atherosclerosis in vivo. Heterozygous adiponectin-deficient (adipo(+/-)) mice showed mild insulin resistance, while homozygous adiponectin-deficient (adipo(-/-)) mice showed moderate insulin resistance with glucose intolerance despite body weight gain similar to that of wild-type mice. Moreover, adipo(-/-) mice showed 2-fold more neointimal formation in response to external vascular cuff injury than wild-type mice (p = 0.01). This study provides the first direct evidence that adiponectin plays a protective role against insulin resistance and atherosclerosis in vivo.
                Bookmark

                Author and article information

                Journal
                Arq Bras Cardiol
                Arq. Bras. Cardiol
                abc
                Arquivos Brasileiros de Cardiologia
                Sociedade Brasileira de Cardiologia - SBC
                0066-782X
                1678-4170
                September 2018
                September 2018
                : 111
                : 3
                : 345-353
                Affiliations
                [1 ] Department of Cardiology, Erasmus MC, Rotterdam - the Netherlands
                [2 ] Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG - Brasil
                [3 ] Washington Hospital Center, Washington DC - USA
                [4 ] University Hospital of Zurich, Zurich - Switzerland
                [5 ] Imperial College, London - United Kingdom
                Author notes
                Mailing Address: Isabella Kardys, P.O. Box 2040. 3000CA, Rotterdam. E-mail: i.kardys@ 123456erasmusmc.nl
                Article
                10.5935/abc.20180172
                6173335
                c322fd25-6182-4e72-b0a4-3ee03af70100

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 November 2017
                : 11 April 2018
                : 11 April 2018
                Categories
                Original Article

                adiponectin,atherosclerosis,plaque, atherosclerotic,ultrasonography, interventional,coronary artery disease / complications.

                Comments

                Comment on this article