28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bluetongue: a historical and epidemiological perspective with the emphasis on South Africa

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bluetongue (BT) is a non-contagious, infectious, arthropod transmitted viral disease of domestic and wild ruminants that is caused by the bluetongue virus (BTV), the prototype member of the Orbivirus genus in the family Reoviridae. Bluetongue was first described in South Africa, where it has probably been endemic in wild ruminants since antiquity. Since its discovery BT has had a major impact on sheep breeders in the country and has therefore been a key focus of research at the Onderstepoort Veterinary Research Institute in Pretoria, South Africa. Several key discoveries were made at this Institute, including the demonstration that the aetiological agent of BT was a dsRNA virus that is transmitted by Culicoides midges and that multiple BTV serotypes circulate in nature. It is currently recognized that BT is endemic throughout most of South Africa and 22 of the 26 known serotypes have been detected in the region. Multiple serotypes circulate each vector season with the occurrence of different serotypes depending largely on herd-immunity. Indigenous sheep breeds, cattle and wild ruminants are frequently infected but rarely demonstrate clinical signs, whereas improved European sheep breeds are most susceptible. The immunization of susceptible sheep remains the most effective and practical control measure against BT. In order to protect sheep against multiple circulating serotypes, three pentavalent attenuated vaccines have been developed. Despite the proven efficacy of these vaccines in protecting sheep against the disease, several disadvantages are associated with their use in the field.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The pathology and pathogenesis of bluetongue.

          Bluetongue (BT) is an insect-transmitted viral disease of wild and domestic ruminants and, occasionally, other species. Amongst domestic livestock, BT is most common in certain breeds of sheep whereas asymptomatic BT virus (BTV) infection of cattle is typical in enzootic regions. BT in cattle can be a feature of specific outbreaks, notably the current epizootic in Europe caused by BTV serotype 8. BTV replicates within mononuclear phagocytic and endothelial cells, lymphocytes and possibly other cell types in lymphoid tissues, the lungs, skin and other tissues. Infected ruminants may exhibit a prolonged but not persistent viraemia and BTV is associated with erythrocytes during the late stages of this prolonged viraemia. The pathogenesis of BT involves injury to small blood vessels in target tissues, but the relative contributions of direct virus-induced cytolysis and virus-induced vasoactive mediators in causing endothelial injury and dysfunction are presently unclear. The lesions of BT are characteristic and include: haemorrhage and ulcers in the oral cavity and upper gastrointestinal tract; necrosis of skeletal and cardiac muscle; coronitis; subintimal haemorrhage in the pulmonary artery; oedema of the lungs, ventral subcutis, and fascia of the muscles of the neck and abdominal wall; and pericardial, pleural and abdominal effusions. Transplacental transmission of BTV in ruminants, with subsequent fetal infection, is a property of specific virus strains, especially those propagated in embryonated eggs or cell culture. The outcome of BTV infection of fetal ruminants is age-dependent, with distinctive cavitating lesions of the central nervous system in animals that survive infection in early gestation. Immune competence to BTV arises by mid-gestation, and animals infected in late gestation can be born viraemic and without significant brain malformations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for transplacental and contact transmission of bluetongue virus in cattle.

            This paper presents evidence that a field strain of bluetongue virus serotype 8 (BTV-8) was transmitted transplacentally and that it was also spread by a direct contact route. Twenty pregnant heifers were imported from the Netherlands into Northern Ireland during the midge-free season. Tests before and after the animals were imported showed that eight of them had antibodies to bluetongue virus, but no viral RNA was detected in any of them by reverse transcriptase-PCR (RT-PCR). Two of the seropositive heifers gave birth to three calves that showed evidence of bluetongue virus infection (RT-PCR-positive), and one of the calves was viraemic. Two further viraemic animals (one newly calved Dutch heifer, and one milking cow originally from Scotland) were also found to have been infected with BTV-8 and evidence is presented that these two animals may have been infected by direct contact, possibly through the ingestion of placentas infected with BTV-8.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 2006 outbreak of bluetongue in northern Europe--the entomological perspective.

              After bluetongue (BT) appeared in northern Europe in August 2006 entomological studies were implemented in all five affected Member States (MSs) to establish which species of Culicoides had acted as vectors. The findings can be summarised as follows: (i) C. imicola the principal southern European/African vector of BTV has not penetrated into northern Europe, (ii) three pools of C. obsoletus/C. scoticus and one of C. dewulfi assayed RT-PCR-positive to BTV-8, (iii) in support of these results it was found that both potential vectors had also high parity rates (approximately 40%) indicating increased longevity favouring BTV virogenesis and transmission, (iv) furthermore, C. obsoletus/C. scoticus and C. dewulfi occurred also widely and abundantly on sheep and cattle holdings across the entire affected region, (v) and during the latter part of the season showed strong endophily readily entering livestock buildings in significant numbers to bite the animals inside (endophagy), (vi) which demonstrates that housing at best offers only limited protection to livestock from Culicoides attacks, (vii) in contrast the potential vector C. pulicaris sensu stricto was restricted geographically, was captured rarely, had a low parity rate (10%) and was exophilic indicating it played no role in the outbreak of BT, (viii) the incrimination of C. dewulfi as a novel vector is significant because it breeds in cattle and horse dung this close association raising its vectorial potential, but (ix) problems with its taxonomy (and that of the Obsoletus and Pulicaris species complexes) illustrates the need for morphological and molecular techniques to become more fully integrated to ensure progress in the accurate identification of vector Culicoides, (x) midge densities (as adjudged by light traps) were generally low indicating northern European Culicoides to have a high vector potential and/or that significant numbers of midges are going undetected because they are biting (and transmitting BTV) during the day when light traps are not effective, and (xi) the sporadic capture of Culicoides in the winter of 2007 invites re-examination of the current definition of a vector-free period. The re-emergence of BT over a wide front in 2007 raises anew questions as to precisely how the virus overwinters and asks also that we scrutinise our monitoring systems in terms of their sensitivity and early warning capability.
                Bookmark

                Author and article information

                Journal
                Virol J
                Virol. J
                Virology Journal
                BioMed Central
                1743-422X
                2012
                13 September 2012
                : 9
                : 198
                Affiliations
                [1 ]Department of Veterinary Tropical Diseases, Faculty of Veterinary Medicine, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa
                [2 ]Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P. O. Box 8146, Oslo, Norway
                [3 ]Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, P. O. Box 8146, 0033 Oslo, Norway
                Article
                1743-422X-9-198
                10.1186/1743-422X-9-198
                3492172
                22973992
                c3e661b6-0af4-4aff-a08a-f4d07ac63bba
                Copyright ©2012 Coetzee et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 February 2012
                : 29 August 2012
                Categories
                Review

                Microbiology & Virology
                cattle,south africa,bluetongue virus,serotype,african herbivores,vaccine,culicoides,african carnivores,survey,onderstepoort,control,sheep

                Comments

                Comment on this article