Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The subglacial geology of Wilkes Land, East Antarctica : Aitken et al.: Wilkes Land Geology

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antarctic ice-sheet loss driven by basal melting of ice shelves.

            Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Global continental and ocean basin reconstructions since 200Ma

                Bookmark

                Author and article information

                Journal
                Geophysical Research Letters
                Geophys. Res. Lett.
                Wiley-Blackwell
                00948276
                April 16 2014
                April 16 2014
                : 41
                : 7
                : 2390-2400
                Article
                10.1002/2014GL059405
                c3f94a7f-8563-4afc-a608-e0d34b84cbc1
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article