64
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinct Lipid A Moieties Contribute to Pathogen-Induced Site-Specific Vascular Inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS) structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4) agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE −/− mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE −/− mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune detection at TLR4 facilitating chronic inflammation in the vasculature. These studies support the emerging concept that pathogen-mediated chronic inflammatory disorders result from specific pathogen-mediated evasion strategies resulting in low-grade chronic inflammation.

          Author Summary

          Several human pathogens express structurally divergent forms of lipid A, the endotoxic portion of lipopolysaccharide (LPS), as a strategy to evade host innate immune detection and establish persistent infection. Expression of modified lipid A species promotes pathogen evasion of host recognition by Toll-like receptor-4 (TLR4) and the non-canonical inflammasome. The Gram-negative oral anaerobe, Porphyromonas gingivalis, expresses lipid A structures that function as TLR4 agonists or antagonists, or are immunologically inert. It is currently unclear how modulation of P. gingivalis lipid A expression contributes to innate immune recognition, survival, and the ability of the pathogen to induce local and systemic inflammation. In this study, we demonstrate that P. gingivalis expression of antagonist lipid A species results in attenuated production of proinflammatory mediators and evasion of non-canonical inflammasome activation, facilitating bacterial survival in the macrophage. Infection of atherosclerosis-prone ApoE −/− mice with this strain resulted in progression of chronic inflammation in the vasculature. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A modifications, supporting distinct mechanisms for induction of local versus systemic inflammation. Our work demonstrates that evasion of immune detection at TLR4 contributes to pathogen persistence and facilitates low-grade chronic inflammation.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Toll-like receptors: critical proteins linking innate and acquired immunity.

          Recognition of pathogens is mediated by a set of germline-encoded receptors that are referred to as pattern-recognition receptors (PRRs). These receptors recognize conserved molecular patterns (pathogen-associated molecular patterns), which are shared by large groups of microorganisms. Toll-like receptors (TLRs) function as the PRRs in mammals and play an essential role in the recognition of microbial components. The TLRs may also recognize endogenous ligands induced during the inflammatory response. Similar cytoplasmic domains allow TLRs to use the same signaling molecules used by the interleukin 1 receptors (IL-1Rs): these include MyD88, IL-1R--associated protein kinase and tumor necrosis factor receptor--activated factor 6. However, evidence is accumulating that the signaling pathways associated with each TLR are not identical and may, therefore, result in different biological responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-inflammatory therapy in chronic disease: challenges and opportunities.

            A number of widespread and devastating chronic diseases, including atherosclerosis, type 2 diabetes, and Alzheimer's disease, have a pathophysiologically important inflammatory component. In these diseases, the precise identity of the inflammatory stimulus is often unknown and, if known, is difficult to remove. Thus, there is interest in therapeutically targeting the inflammatory response. Although there has been success with anti-inflammatory therapy in chronic diseases triggered by primary inflammation dysregulation or autoimmunity, there are considerable limitations. In particular, the inflammatory response is critical for survival. As a result, redundancy, compensatory pathways, and necessity narrow the risk:benefit ratio of anti-inflammatory drugs. However, new advances in understanding inflammatory signaling and its links to resolution pathways, together with new drug development, offer promise in this area of translational biomedical research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A clinical perspective of IL-1β as the gatekeeper of inflammation.

              An expanding spectrum of acute and chronic non-infectious inflammatory diseases is uniquely responsive to IL-1β neutralization. IL-1β-mediated diseases are often called "auto-inflammatory" and the dominant finding is the release of the active form of IL-1β driven by endogenous molecules acting on the monocyte/macrophage. IL-1β activity is tightly controlled and requires the conversion of the primary transcript, the inactive IL-1β precursor, to the active cytokine by limited proteolysis. Limited proteolysis can take place extracellularly by serine proteases, released in particular by infiltrating neutrophils or intracellularly by the cysteine protease caspase-1. Therefore, blocking IL-1β resolves inflammation regardless of how the cytokine is released from the cell or how the precursor is cleaved. Endogenous stimulants such as oxidized fatty acids and lipoproteins, high glucose concentrations, uric acid crystals, activated complement, contents of necrotic cells, and cytokines, particularly IL-1 itself, induce the synthesis of the inactive IL-1β precursor, which awaits processing to the active form. Although bursts of IL-1β precipitate acute attacks of systemic or local inflammation, IL-1β also contributes to several chronic diseases. For example, ischemic injury, such as myocardial infarction or stroke, causes acute and extensive damage, and slowly progressive inflammatory processes take place in atherosclerosis, type 2 diabetes, osteoarthritis and smoldering myeloma. Evidence for the involvement of IL-1β and the clinical results of reducing IL-1β activity in this broad spectrum of inflammatory diseases are the focus of this review. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                July 2014
                10 July 2014
                : 10
                : 7
                : e1004215
                Affiliations
                [1 ]Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [2 ]Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, United States of America
                [3 ]Department of Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [4 ]Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
                The Ohio State University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CS CAG. Performed the experiments: CS NH CK GP EOW CVG. Analyzed the data: CS NH GP CVG. Contributed reagents/materials/analysis tools: SRC JAH RPD CAG. Wrote the paper: CS SRC RPD CAG.

                Article
                PPATHOGENS-D-14-00087
                10.1371/journal.ppat.1004215
                4092147
                25010102
                c4529560-4e17-45b2-abf8-f2ad7108a597
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 January 2014
                : 16 May 2014
                Page count
                Pages: 14
                Funding
                This work was supported with grants from the NIH NIAID T32AI089673-01A1, NIAID PO1 AI078894-01A1, and NIAID 3RO1DE012768-12S1. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Immunology
                Microbiology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article