5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Caspase-3 Is a Pivotal Regulator of Microvascular Rarefaction and Renal Fibrosis after Ischemia-Reperfusion Injury

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d8870894e318"> <b>Background</b> Ischemia-reperfusion injury (IRI) is a major risk factor for chronic renal failure. Here, we characterize the different modes of programmed cell death in the tubular and microvascular compartments during the various stages of IRI-induced AKI, and their relative importance to renal fibrogenesis. </p><p id="d8870894e323"> <b>Methods</b> We performed unilateral renal artery clamping for 30 minutes and contralateral nephrectomy in wild-type mice (C57BL/6) or caspase-3 <sup>−/−</sup> mice. </p><p id="d8870894e331"> <b>Results</b> Compared with their wild-type counterparts, caspase-3 <sup>−/−</sup> mice in the early stage of AKI had high urine cystatin C levels, tubular injury scores, and serum creatinine levels. Electron microscopy revealed evidence of tubular epithelial cell necrosis in caspase-3 <sup>−/−</sup> mice, and immunohistochemistry showed upregulation of the necroptosis marker receptor-interacting serine/threonine-protein kinase 3 (RIPK3) in renal cortical sections. Western blot analysis further demonstrated enhanced levels of phosphorylated RIPK3 in the kidneys of caspase-3 <sup>−/−</sup> mice. In contrast, caspase-3 <sup>−/−</sup> mice had less microvascular congestion and activation in the early and extension phases of AKI. In the long term (3 weeks after IRI), caspase-3 <sup>−/−</sup> mice had reduced microvascular rarefaction and renal fibrosis, as well as decreased expression of <i>α</i>-smooth muscle actin and reduced collagen deposition within peritubular capillaries. Moreover, caspase-3 <sup>−/−</sup> mice exhibited signs of reduced tubular ischemia, including lower tubular expression of hypoxia-inducible factor-1 <i>α</i> and improved tubular injury scores. </p><p id="d8870894e361"> <b>Conclusions</b> These results establish the pivotal importance of caspase-3 in regulating microvascular endothelial cell apoptosis and renal fibrosis after IRI. These findings also demonstrate the predominant role of microvascular over tubular injury as a driver of progressive renal damage and fibrosis after IRI. </p>

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a Gasdermin

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute kidney injury increases risk of ESRD among elderly.

            Risk for ESRD among elderly patients with acute kidney injury (AKI) has not been studied in a large, representative sample. This study aimed to determine incidence rates and hazard ratios for developing ESRD in elderly individuals, with and without chronic kidney disease (CKD), who had AKI. In the 2000 5% random sample of Medicare beneficiaries, clinical conditions were identified using Medicare claims; ESRD treatment information was obtained from ESRD registration during 2 yr of follow-up. Our cohort of 233,803 patients were hospitalized in 2000, were aged > or = 67 yr on discharge, did not have previous ESRD or AKI, and were Medicare-entitled for > or = 2 yr before discharge. In this cohort, 3.1% survived to discharge with a diagnosis of AKI, and 5.3 per 1000 developed ESRD. Among patients who received treatment for ESRD, 25.2% had a previous history of AKI. After adjustment for age, gender, race, diabetes, and hypertension, the hazard ratio for developing ESRD was 41.2 (95% confidence interval [CI] 34.6 to 49.1) for patients with AKI and CKD relative to those without kidney disease, 13.0 (95% CI 10.6 to 16.0) for patients with AKI and without previous CKD, and 8.4 (95% CI 7.4 to 9.6) for patients with CKD and without AKI. In summary, elderly individuals with AKI, particularly those with previously diagnosed CKD, are at significantly increased risk for ESRD, suggesting that episodes of AKI may accelerate progression of renal disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Caspases and their substrates

              Protease biology is intimately linked to the functional consequences of substrate cleavage events. Human caspases are a family of 12 fate-determining cysteine proteases that are best known for driving cell death, either apoptosis or pyroptosis. More recently, caspases have been shown to be involved in other cellular remodeling events as well including stem cell fate determination, spermatogenesis, and erythroid differentiation. Recent global proteomics methods enable characterization of the substrates that caspases cleave in live cells and cell extracts. The number of substrate targets identified for individual caspases can vary widely ranging from only a (few) dozen targets for caspases-4, -5, -9, and -14 to hundreds of targets for caspases-1, -2, -3, -6, -7, and -8. Proteomic studies characterizing the rates of target cleavage show that each caspase has a preferred substrate cohort that sometimes overlaps between caspases, but whose rates of cleavage vary over 500-fold within each group. Determining the functional consequences of discrete proteolytic events within the global substrate pool is a major challenge for the field. From the handful of individual targets that have been studied in detail, there are only a few so far that whose single cleavage event is capable of sparking apoptosis alone, such as cleavage of caspase-3/-7 and BIM EL , or for pyroptosis, gasdermin D. For the most part, it appears that cleavage events function cooperatively in the cell death process to generate a proteolytic synthetic lethal outcome. In contrast to apoptosis, far less is known about caspase biology in non-apoptotic cellular processes, such as cellular remodeling, including which caspases are activated, the mechanisms of their activation and deactivation, and the key substrate targets. Here we survey the progress made in global identification of caspase substrates using proteomics and the exciting new avenues these studies have opened for understanding the molecular logic of substrate cleavage in apoptotic and non-apoptotic processes.
                Bookmark

                Author and article information

                Journal
                Journal of the American Society of Nephrology
                JASN
                American Society of Nephrology (ASN)
                1046-6673
                1533-3450
                June 29 2018
                July 2018
                July 2018
                June 20 2018
                : 29
                : 7
                : 1900-1916
                Article
                10.1681/ASN.2017050581
                6050936
                29925521
                c48645fe-9876-4f81-b41b-b7276e6e13dc
                © 2018
                History

                Comments

                Comment on this article