28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The pseudokinase SgK223 promotes invasion of pancreatic ductal epithelial cells through JAK1/Stat3 signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Characterization of molecular mechanisms underpinning development of pancreatic ductal adenocarcinoma (PDAC) may lead to the identification of novel therapeutic targets and biomarkers. SgK223, also known as Pragmin, is a pseudokinase and scaffolding protein closely related to SgK269/PEAK1. Both proteins are implicated in oncogenic tyrosine kinase signaling, but their mechanisms and function remain poorly characterized.

          Methods

          Expression of SgK223 in PDAC and PDAC cell lines was characterized using gene expression microarrays, mass spectrometry (MS)-based phosphoproteomics and Western blotting. SgK223 was overexpressed in human pancreatic ductal epithelial (HPDE) cells via retroviral transduction, and knocked down in PDAC cells using siRNA. Cell proliferation was determined using a colorimetric cell viability assay, and cell migration and invasion using transwells. Expression of markers of epithelial-mesenchyme transition (EMT) was assayed by quantitative PCR. SgK223 and Stat3 signaling was interrogated by immunoprecipitation, Western blot and gene reporter assays. The functional role of specific kinases and Stat3 was determined using selective small molecule inhibitors.

          Results

          Elevated site-selective tyrosine phosphorylation of SgK223 was identified in subsets of PDAC cell lines, and increased expression of SgK223 detected in several PDAC cell lines compared to human pancreatic ductal epithelial (HPDE) cells and in PDACs compared to normal pancreas. Expression of SgK223 in HPDE cells at levels comparable to those in PDAC did not alter cell proliferation but led to a more elongated morphology, enhanced migration and invasion and induced gene expression changes characteristic of a partial EMT. While SgK223 overexpression did not affect activation of Erk or Akt, it led to increased Stat3 Tyr705 phosphorylation and Stat3 transcriptional activity, and SgK223 and Stat3 associated in vivo. SgK223-overexpressing cells exhibited increased JAK1 activation, and use of selective inhibitors determined that the increased Stat3 signaling driven by SgK223 was JAK-dependent. Pharmacological inhibition of Stat3 revealed that Stat3 activation was required for the enhanced motility and invasion of SgK223-overexpressing cells.

          Conclusions

          Increased expression of SgK223 occurs in PDAC, and overexpression of SgK223 in pancreatic ductal epithelial cells promotes acquisition of a migratory and invasive phenotype through enhanced JAK1/Stat3 signaling. This represents the first association of SgK223 with a particular human cancer, and links SgK223 with a major signaling pathway strongly implicated in PDAC progression.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.

          Despite the success of tyrosine kinase-based cancer therapeutics, for most solid tumors the tyrosine kinases that drive disease remain unknown, limiting our ability to identify drug targets and predict response. Here we present the first large-scale survey of tyrosine kinase activity in lung cancer. Using a phosphoproteomic approach, we characterize tyrosine kinase signaling across 41 non-small cell lung cancer (NSCLC) cell lines and over 150 NSCLC tumors. Profiles of phosphotyrosine signaling are generated and analyzed to identify known oncogenic kinases such as EGFR and c-Met as well as novel ALK and ROS fusion proteins. Other activated tyrosine kinases such as PDGFRalpha and DDR1 not previously implicated in the genesis of NSCLC are also identified. By focusing on activated cell circuitry, the approach outlined here provides insight into cancer biology not available at the chromosomal and transcriptional levels and can be applied broadly across all human cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stattic: a small-molecule inhibitor of STAT3 activation and dimerization.

            Signal transducers and activators of transcription (STATs) are a family of latent cytoplasmic transcription factors that transmit signals from the cell membrane to the nucleus. One family member, STAT3, is constitutively activated by aberrant upstream tyrosine kinase activities in a broad spectrum of cancer cell lines and human tumors. Screening of chemical libraries led to the identification of Stattic, a nonpeptidic small molecule shown to selectively inhibit the function of the STAT3 SH2 domain regardless of the STAT3 activation state in vitro. Stattic selectively inhibits activation, dimerization, and nuclear translocation of STAT3 and increases the apoptotic rate of STAT3-dependent breast cancer cell lines. We propose Stattic as a tool for the inhibition of STAT3 in cell lines or animal tumor models displaying constitutive STAT3 activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis.

              The STAT3 transcription factor is an important regulator of stem cell self-renewal, cancer cell survival, and inflammation. In the pancreas, STAT3 is dispensable for normal development, whereas the majority of pancreatic ductal adenocarcinomas (PDAC) show constitutive activation of STAT3, suggesting its potential as a therapeutic target in this cancer. Here, we sought to define the mechanisms of STAT3 activation and its functional importance in PDAC pathogenesis. Large-scale screening of cancer cell lines with a JAK2 inhibitor that blocks STAT3 function revealed a more than 30-fold range in sensitivity in PDAC, and showed a close correlation of sensitivity with levels of tyrosine-phosphorylated STAT3 and of the gp130 receptor, an upstream signaling component. Correspondingly, upregulation of the IL6/LIF-gp130 pathway accounted for the strong STAT3 activation in PDAC subsets. To define functions of STAT3 in vivo, we developed mouse models that test the impact of conditional inactivation of STAT3 in KRAS-driven PDAC. We showed that STAT3 is required for the development of the earliest premalignant pancreatic lesions, acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN). Moreover, acute STAT3 inactivation blocked PDAC initiation in a second in vivo model. Our results show that STAT3 has critical roles throughout the course of PDAC pathogenesis, supporting the development of therapeutic approaches targeting this pathway. Moreover, our work suggests that gp130 and phospho-STAT3 expression may be effective biomarkers for predicting response to JAK2 inhibitors. ©2011 AACR.
                Bookmark

                Author and article information

                Contributors
                carole.tactacan@gmail.com
                yuwei.phua@monash.edu
                ling.liu@monash.edu
                luxi.zhang@monash.edu
                ehumphrey@biochem.mpg.de
                m.cowley@garvan.org.au
                m.pinese@garvan.org.au
                andrew.biankin@glasgow.ac.uk
                61-3-990-29301 , roger.daly@monash.edu
                Journal
                Mol Cancer
                Mol. Cancer
                Molecular Cancer
                BioMed Central (London )
                1476-4598
                29 July 2015
                29 July 2015
                2015
                : 14
                : 139
                Affiliations
                [ ]Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010 Australia
                [ ]Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
                [ ]Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Scotland, G61 1BD UK
                [ ]Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Level 1, Building 77, 23 Innovation Walk, Monash, VIC 3800 Australia
                Article
                412
                10.1186/s12943-015-0412-3
                4517651
                26215634
                c486c5b5-e22b-4ff8-a64f-7c2b08da4b2a
                © Tactacan et al. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 19 January 2015
                : 15 July 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Oncology & Radiotherapy
                pragmin,sgk269,peak1,tyrosine kinase,pancreatic cancer
                Oncology & Radiotherapy
                pragmin, sgk269, peak1, tyrosine kinase, pancreatic cancer

                Comments

                Comment on this article