20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of acute sleep loss on diurnal plasma dynamics of CNS health biomarkers in young men

      research-article
      , PhD, , MD, PhD, , MD, PhD, , MD, PhD
      Neurology
      Lippincott Williams & Wilkins

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Disrupted sleep increases CSF levels of tau and β-amyloid (Aβ) and is associated with an increased risk of Alzheimer disease (AD). Our aim was to determine whether acute sleep loss alters diurnal profiles of plasma-based AD-associated biomarkers.

          Methods

          In a 2-condition crossover study, 15 healthy young men participated in 2 standardized sedentary in-laboratory conditions in randomized order: normal sleep vs overnight sleep loss. Plasma levels of total tau (t-tau), Aβ40, Aβ42, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) were assessed using ultrasensitive single molecule array assays or ELISAs, in the fasted state in the evening prior to, and in the morning after, each intervention.

          Results

          In response to sleep loss (+17.2%), compared with normal sleep (+1.8%), the evening to morning ratio was increased for t-tau ( p = 0.035). No changes between the sleep conditions were seen for levels of Aβ40, Aβ42, NfL, or GFAP (all p > 0.10). The AD risk genotype rs4420638 did not significantly interact with sleep loss–related diurnal changes in plasma levels of Aβ40 or Aβ42 ( p > 0.10). Plasma levels of Aβ42 (−17.1%) and GFAP (−12.1%) exhibited an evening to morning decrease across conditions ( p < 0.05).

          Conclusions

          Our exploratory study suggests that acute sleep loss results in increased blood levels of t-tau. These changes provide further evidence that sleep loss may have detrimental effects on brain health even in younger individuals. Larger cohorts are warranted to delineate sleep vs circadian mechanisms, implications for long-term recurrent conditions (e.g., in shift workers), as well as interactions with other lifestyle and genetic factors.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE.

          Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. To date four genes have been established to either cause early-onset autosomal-dominant AD (APP, PSEN1, and PSEN2(1-4)) or to increase susceptibility for late-onset AD (APOE5). However, the heritability of late-onset AD is as high as 80%, (6) and much of the phenotypic variance remains unexplained to date. We performed a genome-wide association (GWA) analysis using 484,522 single-nucleotide polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of self-reported European descent. We identified five SNPs showing either significant or marginally significant genome-wide association with a multivariate phenotype combining affection status and onset age. One of these signals (p = 5.7 x 10(-14)) was elicited by SNP rs4420638 and probably reflects APOE-epsilon4, which maps 11 kb proximal (r2 = 0.78). The other four signals were tested in three additional independent AD family samples composed of nearly 2700 individuals from almost 900 families. Two of these SNPs showed significant association in the replication samples (combined p values 0.007 and 0.00002). The SNP (rs11159647, on chromosome 14q31) with the strongest association signal also showed evidence of association with the same allele in GWA data generated in an independent sample of approximately 1,400 AD cases and controls (p = 0.04). Although the precise identity of the underlying locus(i) remains elusive, our study provides compelling evidence for the existence of at least one previously undescribed AD gene that, like APOE-epsilon4, primarily acts as a modifier of onset age.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer's disease.

            While the apolipoprotein E (APOE) epsilon allele is a well-established risk factor for late-onset Alzheimer's disease (AD), initial genome scans using microsatellite markers in late-onset AD failed to identify this locus on chromosome 19. Recently developed methods for the simultaneous assessment of hundreds of thousands of single nucleotide polymorphisms (SNPs) promise to help more precisely identify loci that contribute to the risk of AD and other common multigenic conditions. We sought here to demonstrate that more precise identification of loci that are associated with complex, multi-genic genetic disorders can be achieved using ultra-high-density whole-genome associations by demonstrating their ability to identify the APOE locus as a major susceptibility gene for late-onset AD, despite the absence of SNPs within the APOE locus itself, as well as to refine odds ratios (ORs) based on gold-standard phenotyping of the study population. An individualized genome-wide association study using 502,627 SNPs was performed in 1086 his-topathologically verified AD cases and controls to determine the OR associated with genes predisposing to Alzheimer's disease. As predicted, ultra-high-density SNP genotyping, in contrast to traditional microsatellite-based genome screening approaches, precisely identified the APOE locus as having a significant association with late-onset AD. SNP rs4420638 on chromosome 19, located 14 kilobase pairs distal to the APOE epsilon variant, significantly distinguished between AD cases and controls (Bonferroni corrected p value = 5.30 x 10(-34), OR = 4.01) and was far more strongly associated with the risk of AD than any other SNP of the 502,627 tested. This study provides empirical support for the suggestion that the APOE locus is the major susceptibility gene for late-onset AD in the human genome, with an OR significantly greater than any other locus in the human genome. It also supports the feasibility of the ultra-high-density whole-genome association approach to the study of AD and other heritable phenotypes. These whole-genome association studies show great promise to identify additional genes that contribute to the risk of AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics

              Sleep disturbances are associated with future risk of Alzheimer disease. Disrupted sleep increases soluble amyloid β, suggesting a mechanism for sleep disturbances to increase Alzheimer disease risk. We tested this response in humans using indwelling lumbar catheters to serially sample cerebrospinal fluid while participants were sleep-deprived, treated with sodium oxybate, or allowed to sleep normally. All participants were infused with 13 C6 -leucine to measure amyloid β kinetics. We found that sleep deprivation increased overnight amyloid β38, amyloid β40, and amyloid β42 levels by 25 to 30% via increased overnight amyloid β production relative to sleeping controls. These findings suggest that disrupted sleep increases Alzheimer disease risk via increased amyloid β production. Ann Neurol 2018;83:197-204.
                Bookmark

                Author and article information

                Journal
                Neurology
                Neurology
                neurology
                neur
                neurology
                NEUROLOGY
                Neurology
                Lippincott Williams & Wilkins (Hagerstown, MD )
                0028-3878
                1526-632X
                17 March 2020
                17 March 2020
                : 94
                : 11
                : e1181-e1189
                Affiliations
                From the Departments of Neuroscience (C.B., J.C.) and Medical Sciences (J.C.), Uppsala University; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK.
                Author notes
                Correspondence Dr. Cedernaes jonathan.cedernaes@ 123456medsci.uu.se

                Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

                The Article Processing Charge was funded by the Swedish Research Council.

                Author information
                http://orcid.org/0000-0002-8911-4068
                http://orcid.org/0000-0002-9052-8372
                Article
                NEUROLOGY2019981605 00012
                10.1212/WNL.0000000000008866
                7220231
                31915189
                c48bf9f5-061e-4191-b457-9f9a5e5f575c
                © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

                This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 March 2019
                : 27 September 2019
                Categories
                25
                26
                244
                Article
                Custom metadata
                TRUE
                ONLINE-ONLY

                Comments

                Comment on this article