66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperosmotic Stress Reduces Melanin Production by Altering Melanosome Formation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many tissues of the human body encounter hyperosmotic stress. The effect of extracellular osmotic changes on melanin production has not yet been elucidated. In this study, we determined that hyperosmotic stress induced by organic osmolytes results in reduced melanin production in human melanoma MNT-1 cells. Under hyperosmotic stress, few pigmented mature melanosomes were detected, but there was an increase in swollen vacuoles. These vacuoles were stained with an anti-M6PR antibody that recognizes late endosomal components and with anti-TA99 and anti-HMB45 antibodies, implying that melanosome formation was affected by hyperosmotic stress. Electron microscopic analysis revealed that the M6PR-positive swollen vacuoles were multi-layered and contained melanized granules, and they produced melanin when L-DOPA was applied, indicating that these vacuoles were still capable of producing melanin, but the inner conditions were not compatible with melanin production. The vacuolation phenomenon induced by hyperosmotic conditions disappeared with treatment with the PI3K activator 740 Y-P, indicating that the PI3K pathway is affected by hyperosmotic conditions and is responsible for the proper formation and maturation of melanosomes. The microarray analysis showed alterations of the vesicle organization and transport under hyperosmotic stress. Our findings suggest that melanogenesis could be regulated by physiological conditions, such as osmotic pressure.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein.

          Trehalose, a disaccharide present in many non-mammalian species, protects cells against various environmental stresses. Whereas some of the protective effects may be explained by its chemical chaperone properties, its actions are largely unknown. Here we report a novel function of trehalose as an mTOR-independent autophagy activator. Trehalose-induced autophagy enhanced the clearance of autophagy substrates like mutant huntingtin and the A30P and A53T mutants of alpha-synuclein, associated with Huntington disease (HD) and Parkinson disease (PD), respectively. Furthermore, trehalose and mTOR inhibition by rapamycin together exerted an additive effect on the clearance of these aggregate-prone proteins because of increased autophagic activity. By inducing autophagy, we showed that trehalose also protects cells against subsequent pro-apoptotic insults via the mitochondrial pathway. The dual protective properties of trehalose (as an inducer of autophagy and chemical chaperone) and the combinatorial strategy with rapamycin may be relevant to the treatment of HD and related diseases, where the mutant proteins are autophagy substrates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mannose 6-phosphate receptor and the biogenesis of lysosomes.

            Localization of the 215 kd mannose 6-phosphate receptor (MPR) was studied in normal rat kidney cells. Low levels of receptor were detected in the trans Golgi network, Golgi stack, plasma membrane, and peripheral endosomes. The bulk of the receptor was localized to an acidic, reticular-vesicular structure adjacent to the Golgi complex. The structure also labeled with antibodies to lysosomal enzymes and a lysosomal membrane glycoprotein (lgp120). While lysosome-like, this structure is not a typical lysosome that is devoid of MPRs. The endocytic marker alpha 2 macroglobulin-gold entered the structure at 37 degrees C, but not at 20 degrees C. With prolonged chase, most of the marker was transported from the structure into lysosomes. We propose that the MPR/lgp-enriched structure is a specialized endosome (prelysosome) that serves as an intermediate compartment into which endocytic vesicles discharge their contents, and where lysosomal enzymes are released from the MPR and packaged along with newly synthesized lysosomal glycoproteins into lysosomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor.

              Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defective lysosome-related organelles. Here, we report the identification of two HPS patients with mutations in the beta 3A subunit of the heterotetrameric AP-3 complex. The patients' fibroblasts exhibit drastically reduced levels of AP-3 due to enhanced degradation of mutant beta 3A. The AP-3 deficiency results in increased surface expression of the lysosomal membrane proteins CD63, lamp-1, and lamp-2, but not of nonlysosomal proteins. These differential effects are consistent with the preferential interaction of the AP-3 mu 3A subunit with tyrosine-based signals involved in lysosomal targeting. Our results suggest that AP-3 functions in protein sorting to lysosomes and provide an example of a human disease in which altered trafficking of integral membrane proteins is due to mutations in a component of the sorting machinery.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                29 August 2014
                : 9
                : 8
                : e105965
                Affiliations
                [1 ]Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
                [2 ]Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
                [3 ]Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
                [4 ]Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
                Iowa State University, United States of America
                Author notes

                Competing Interests: Co-authors Bum-Ho Bin, Seung Ha Yang, Dong Wook Shin, Eun-Gyung Cho and Tae Ryong Lee are employed by Amorepacific Corporation R&D Center. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: BHB JHB SHY DHC KP. Performed the experiments: BHB JHB DWS AYL DH. Analyzed the data: BHB JHB DWS AYL DH. Contributed reagents/materials/analysis tools: BHB JHB. Wrote the paper: BHB JHB EGC TRL.

                Article
                PONE-D-14-07775
                10.1371/journal.pone.0105965
                4149489
                25170965
                c4b069b4-fa55-4fd8-83d3-510fc5de8468
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 February 2014
                : 29 July 2014
                Page count
                Pages: 10
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cellular Stress Responses
                Molecular Cell Biology
                Medicine and Health Sciences
                Dermatology
                Pigmentary Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article