13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spin trapping of superoxide radicals and peroxynitrite by 1-hydroxy-3-carboxy-pyrrolidine and 1-hydroxy-2,2,6, 6-tetramethyl-4-oxo-piperidine and the stability of corresponding nitroxyl radicals towards biological reductants.

      Biochemical and Biophysical Research Communications
      Animals, Ascorbic Acid, chemistry, Cysteine, Electron Spin Resonance Spectroscopy, Glutathione, Muscle, Smooth, Nitrates, Oxidation-Reduction, Piperidines, Pyrrolidines, Spin Trapping, Superoxides

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reactions of new spin trap 1-hydroxy-3-carboxy-pyrrolidine (CP-H) with superoxide radicals and peroxynitrite were studied. The rate constants were determined as 3.2 x 10(3) and 4.5 x 10(9) M-1s-1, respectively. It was found that 2mM of spin trap CP-H or 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine (TEMPONE-H) provide almost the same spin trapping efficacy. In contrast to TEMPONE-H the reaction of CP-H with peroxynitrite was inhibited by 20 mM DMSO. This simplifies the quantification of peroxynitrite formation. During the reaction of CP-H and TEMPONE-H with superoxide radicals or peroxynitrite the stable nitroxide radicals 3-carboxy-proxyl (CP) and 2,2,6,6-tetramethyl-4-oxo-piperidinoxyl (TEMPONE) are formed. It was found that the rate of reduction of CP by glutathione or by smooth muscle cells was two-fold slower and the reduction of CP by ascorbate was 66-fold slower than corresponding rates of reduction of TEMPONE. Therefore quantification of the formation of superoxide radicals and of peroxynitrite by CP-H is much less hindered by a variety of biological reductants than in case of TEMPONE-H. Thus, CP-H is more suitable for spin trapping of superoxide radicals and peroxynitrite in biological systems than the TEMPONE-H.

          Related collections

          Author and article information

          Comments

          Comment on this article