3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased Serum Levels of miR-125b and miR-132 in Fragile X Syndrome : A Preliminary Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objectives

          Fragile X syndrome (FXS) is a neurodevelopmental disorder, identified as the most common cause of hereditary intellectual disability and monogenic cause of autism spectrum disorders (ASDs), caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein, a regulator of translation that plays an important role in neurodevelopment, and its loss causes cognitive and behavioral deficits. MicroRNAs (miRNAs) are small molecules that regulate gene expression in diverse biological processes. Previous studies found that the interaction of FMRP with miR-125b and miR-132 regulates the maturation and synaptic plasticity in animal models and miRNA dysregulation plays a role in the pathophysiology of FXS. The present study aimed to analyze the expression of miR-125b-5p and miR-132-3p in the serum of patients with FXS.

          Methods

          The expressions of circulating miRNAs were studied in the serum of 10 patients with FXS and 20 controls using the real-time quantitative retrotranscribed method analyzed by relative quantification. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were generated to assess the diagnostic values of the miRNAs.

          Results

          We found that both miR-125b and miR-132 were increased in the serum of patients with FXS compared with controls and likely involved with FMRP loss. The AUC (95% confidence interval) of miR-125b and miR-132 was 0.94 (0.86–1.0) and 0.89 (0.77–1.0), respectively. Databases allowed for the identification of possible target genes for miR-125b and miR-132, whose products play an important role in the homeostasis of the nervous system.

          Discussion

          Our results indicate that serum miR-125b and miR-132 may serve as potential biomarkers for FXS. The increased expression of circulating miR-125b and miR-132 seems to be associated with the genotype of FXS. Predicted gene targets of the differentially regulated miRNAs are involved in cognitive performance and ASD phenotype.

          Classification of Evidence

          This study provides Class III evidence that miR-125b and miR-132 distinguish men with FXS from normal controls.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: genomics, biogenesis, mechanism, and function.

          MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            miRDB: an online database for prediction of functional microRNA targets

            Abstract MicroRNAs (miRNAs) are small noncoding RNAs that act as master regulators in many biological processes. miRNAs function mainly by downregulating the expression of their gene targets. Thus, accurate prediction of miRNA targets is critical for characterization of miRNA functions. To this end, we have developed an online database, miRDB, for miRNA target prediction and functional annotations. Recently, we have performed major updates for miRDB. Specifically, by employing an improved algorithm for miRNA target prediction, we now present updated transcriptome-wide target prediction data in miRDB, including 3.5 million predicted targets regulated by 7000 miRNAs in five species. Further, we have implemented the new prediction algorithm into a web server, allowing custom target prediction with user-provided sequences. Another new database feature is the prediction of cell-specific miRNA targets. miRDB now hosts the expression profiles of over 1000 cell lines and presents target prediction data that are tailored for specific cell models. At last, a new web query interface has been added to miRDB for prediction of miRNA functions by integrative analysis of target prediction and Gene Ontology data. All data in miRDB are freely accessible at http://mirdb.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis

              MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neurol Genet
                Neurol Genet
                nng
                NNG
                Neurology: Genetics
                Wolters Kluwer (Baltimore )
                2376-7839
                December 2022
                26 October 2022
                : 8
                : 6
                : e200024
                Affiliations
                From the Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil.
                Author notes
                Correspondence Dr. Couto rowenacouto@ 123456gmail.com

                Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NG.

                The Article Processing Charge was funded by the authors.

                Submitted and externally peer reviewed. The handling editor was Alexandra Durr, MD, PhD.

                Author information
                https://orcid.org/0000-0001-5234-3169
                https://orcid.org/0000-0002-9330-0154
                https://orcid.org/0000-0003-3366-2177
                https://orcid.org/0000-0002-8401-6821
                https://orcid.org/0000-0003-1103-6589
                https://orcid.org/0000-0003-3699-090X
                Article
                NXG-2022-200027
                10.1212/NXG.0000000000200024
                9608387
                36313066
                c55688e6-ed46-43b8-bf4b-5d344a40fbb8
                Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                History
                : 17 January 2022
                : 11 July 2022
                Categories
                199
                227
                25
                323
                91
                Research Article
                Custom metadata
                TRUE

                Comments

                Comment on this article