Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis ( B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.
Many bacteria encounter both eukaryotic cells and other bacterial species as a part of their lifestyles. In order to compete and survive, these bacteria have evolved specialized pathways that target these distinct cell types. Type VI secretion systems (T6SSs) are bacterial protein export machines postulated to puncture targeted cells using an apparatus that shares structural similarity to bacteriophage. We investigated the role of the five T6SSs of Burkholderia thailandensis in the defense of the organism against other bacteria and higher organisms. B. thailandensis is a relatively avirulent soil saprophyte that is closely related to the human pathogen B. pseudomallei. Our work uncovered roles for two B. thailandensis T6SSs with specialized functions either in the survival of the organism in a murine host, or against another bacterial cell. We also found that B. thailandensis lacking the bacterial-targeting T6SS could not persist in a mixed biofilm with a competing bacterium. Based on the evolutionary relationship of T6SSs, and our findings that B. thailandensis engages other bacterial species in a T6S-dependent manner, we speculate that this pathway is of general significance to interbacterial interactions in polymicrobial human diseases and the environment.