8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CDCP1 is a novel marker of the most aggressive human triple-negative breast cancers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CDCP1, a transmembrane noncatalytic receptor, the expression of which has been associated with a poor prognosis in certain epithelial cancers, was found to be expressed in highly aggressive triple-negative breast cancer (TNBC) cell models, in which it promoted aggressive activities—ie, migration, invasion, anchorage-independent tumor growth, and the formation of vascular-like structures in vitro. By immunohistochemical (IHC) analysis of 100 human TNBC specimens, CDCP1 was overexpressed in 57% of samples, 38% of which exhibited a gain in CDCP1 copy number by fluorescence in situ hybridization (FISH). CDCP1 positivity was significantly associated between FISH and IHC. CDCP1 expression and gains in CDCP1 copy number synergized with nodal (N) status in determining disease-free and distant disease-free survival. The hazard ratios (HRs) of the synergies between CDCP1 positivity by IHC and FISH and lymph node positivity in predicting relapse did not differ significantly, indicating that CDCP1 overexpression in human primary TNBCs, regardless of being driven by gains in CDCP1, is for a critical factor in the progression of N-positive TNBCs. Thus, CDCP1 is a novel marker of the most aggressive N-positive TNBCs and a potential therapeutic target.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer.

          Gefitinib is a selective inhibitor of the epidermal growth factor (EGFR) tyrosine kinase, which is overexpressed in many cancers, including non-small-cell lung cancer (NSCLC). We carried out a clinical study to compare the relationship between EGFR gene copy number, EGFR protein expression, EGFR mutations, and Akt activation status as predictive markers for gefitinib therapy in advanced NSCLC. Tumors from 102 NSCLC patients treated daily with 250 mg of gefitinib were evaluated for EGFR status by fluorescence in situ hybridization (FISH), DNA sequencing, and immunohistochemistry and for Akt activation status (phospho-Akt [P-Akt]) by immunohistochemistry. Time to progression, overall survival, and 95% confidence intervals (CIs) were calculated and evaluated by the Kaplan-Meier method; groups were compared using the log-rank test. Risk factors associated with survival were evaluated using Cox proportional hazards regression modeling and multivariable analysis. All statistical tests were two-sided. Amplification or high polysomy of the EGFR gene (seen in 33 of 102 patients) and high protein expression (seen in 58 of 98 patients) were statistically significantly associated with better response (36% versus 3%, mean difference = 34%, 95% CI = 16.6 to 50.3; P<.001), disease control rate (67% versus 26%, mean difference = 40.6%, 95% CI = 21.5 to 59.7; P<.001), time to progression (9.0 versus 2.5 months, mean difference = 6.5 months, 95% CI = 2.8 to 10.3; P<.001), and survival (18.7 versus 7.0 months, mean difference = 11.7 months, 95% CI = 2.1 to 21.4; P = .03). EGFR mutations (seen in 15 of 89 patients) were also statistically significantly related to response and time to progression, but the association with survival was not statistically significant, and 40% of the patients with mutation had progressive disease. In multivariable analysis, only high EGFR gene copy number remained statistically significantly associated with better survival (hazard ratio = 0.44, 95% CI = 0.23 to 0.82). Independent of EGFR assessment method, EGFR+/P-Akt+ patients had a statistically significantly better outcome than EGFR-, P-Akt-, or EGFR+/P-Akt- patients. High EGFR gene copy number identified by FISH may be an effective molecular predictor for gefitinib efficacy in advanced NSCLC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists.

            Breast cancer is a heterogeneous disease encompassing a variety of entities with distinct morphological features and clinical behaviors. Although morphology is often associated with the pattern of molecular aberrations in breast cancers, it is also clear that tumors of the same histological type show remarkably different clinical behavior. This is particularly true for 'basal-like cancer', which is an entity defined using gene expression analysis. The purpose of this article was to review the current state of knowledge of basal-like breast cancers, to discuss the relationship between basal-like and triple-negative breast cancers, and to clarify practical implications of these diagnoses for pathologists and oncologists.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin

              Background Membrane proteins form key nodes in mediating the cell's interaction with the surroundings, which is one of the main reasons why the majority of drug targets are membrane proteins. Results Here we mined the human proteome and identified the membrane proteome subset using three prediction tools for alpha-helices: Phobius, TMHMM, and SOSUI. This dataset was reduced to a non-redundant set by aligning it to the human genome and then clustered with our own interactive implementation of the ISODATA algorithm. The genes were classified and each protein group was manually curated, virtually evaluating each sequence of the clusters, applying systematic comparisons with a range of databases and other resources. We identified 6,718 human membrane proteins and classified the majority of them into 234 families of which 151 belong to the three major functional groups: receptors (63 groups, 1,352 members), transporters (89 groups, 817 members) or enzymes (7 groups, 533 members). Also, 74 miscellaneous groups with 697 members were determined. Interestingly, we find that 41% of the membrane proteins are singlets with no apparent affiliation or identity to any human protein family. Our results identify major differences between the human membrane proteome and the ones in unicellular organisms and we also show a strong bias towards certain membrane topologies for different functional classes: 77% of all transporters have more than six helices while 60% of proteins with an enzymatic function and 88% receptors, that are not GPCRs, have only one single membrane spanning α-helix. Further, we have identified and characterized new gene families and novel members of existing families. Conclusion Here we present the most detailed roadmap of gene numbers and families to our knowledge, which is an important step towards an overall classification of the entire human proteome. We estimate that 27% of the total human proteome are alpha-helical transmembrane proteins and provide an extended classification together with in-depth investigations of the membrane proteome's functional, structural, and evolutionary features.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                25 October 2016
                10 September 2016
                : 7
                : 43
                : 69649-69665
                Affiliations
                1 Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
                2 Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
                3 Functional Genomic Core Facility, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
                4 Division of Surgical Oncology, Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
                5 Division of Breast Anatomy Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
                6 Start-Up Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
                7 Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
                Author notes
                Article
                11935
                10.18632/oncotarget.11935
                5342505
                27626701
                c5bbafbc-7160-4032-81f6-aa3b5cda9377
                Copyright: © 2016 Turdo et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 September 2015
                : 27 August 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                triple-negative breast cancer,cdcp1,cdcp1 copy number,prognosis,metastasis
                Oncology & Radiotherapy
                triple-negative breast cancer, cdcp1, cdcp1 copy number, prognosis, metastasis

                Comments

                Comment on this article