20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      UV Light Assisted Coating Method of Polyphenol Caffeic Acid and Mediated Immobilization of Metallic Silver Particles for Antibacterial Implant Surface Modification

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Titanium implants are extensively used in biomedical applications due to their excellent biocompatibility, corrosion resistance, and superb mechanical stability. In this work, we present the use of polycaffeic acid (PCA) to immobilize metallic silver on the surface of titanium materials to prevent implant bacterial infection. Caffeic acid is a plant-derived phenolic compound, rich in catechol moieties and it can form functional coatings using alkaline buffers and with UV irradiation. This combination can trigger oxidative polymerization and deposition on the surface of metallic substrates. Using PCA can also give advantages in bone implants in decreasing inflammation by decelerating macrophage and osteoclast activity. Here, chemical and physical properties were investigated using FE-SEM, EDS, XPS, AFM, and contact angle. The in vitro biocompatibility and antibacterial studies show that PCA with metallic silver can inhibit bacterial growth, and proliferation of MC-3T3 cells was observed. Therefore, our results suggest that the introduced approach can be considered as a potential method for functional implant coating application in the orthopedic field.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Intrinsic extracellular matrix properties regulate stem cell differentiation.

          One of the recent paradigm shifts in stem cell biology has been the discovery that stem cells can begin to differentiate into mature tissue cells when exposed to intrinsic properties of the extracellular matrix (ECM), such as matrix structure, elasticity, and composition. These parameters are known to modulate the forces a cell can exert upon its matrix. Mechano-sensitive pathways subsequently convert these biophysical cues into biochemical signals that commit the cell to a specific lineage. Just as with well-studied growth factors, ECM parameters are extremely dynamic and are spatially- and temporally-controlled during development, suggesting that they play a morphogenetic role in guiding differentiation and arrangement of cells. Our ability to dynamically regulate the stem cell niche as the body does is likely a critical requirement for developing differentiated cells from stem cells for therapeutic applications. Here, we present the emergence of stem cell mechanobiology and its future challenges with new biomimetic, three-dimensional scaffolds that are being used therapeutically to treat disease. Copyright 2009 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review on the wettability of dental implant surfaces II: Biological and clinical aspects.

            Dental and orthopedic implants have been under continuous advancement to improve their interactions with bone and ensure a successful outcome for patients. Surface characteristics such as surface topography and surface chemistry can serve as design tools to enhance the biological response around the implant, with in vitro, in vivo and clinical studies confirming their effects. However, the comprehensive design of implants to promote early and long-term osseointegration requires a better understanding of the role of surface wettability and the mechanisms by which it affects the surrounding biological environment. This review provides a general overview of the available information about the contact angle values of experimental and of marketed implant surfaces, some of the techniques used to modify surface wettability of implants, and results from in vitro and clinical studies. We aim to expand the current understanding on the role of wettability of metallic implants at their interface with blood and the biological milieu, as well as with bacteria, and hard and soft tissues. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biofilm-related disease.

              Biofilm formation represents a protected mode of growth that renders bacterial cells less susceptible to antimicrobials and to killing by host immune effector mechanisms and so enables the pathogens to survive in hostile environments and also to disperse and colonize new niches. Biofilm disease includes device-related infections, chronic infections in the absence of a foreign body, and even malfunction of medical devices. Areas covered: This review puts forward a new medical entity that represents a major public health issue, which we have named 'biofilm-related disease'. We highlight the characteristics of biofilm disease including its pathogenesis, microbiological features, clinical presentation, and treatment challenges. Expert commentary: The diversity of biofilm-associated infections is increasing over time and its impact may be underestimated. This peculiar form of development endows associated bacteria with a high tolerance to conventional antimicrobial agents. A small percentage of persister cells developing within the biofilm is known to be highly tolerant to antibiotics and has typically been involved in causing relapse of infections. Knowledge of the pivotal role played by biofilm-growing microorganisms in related infections will provide new treatment dynamics for this biofilm-related disease.
                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                18 July 2019
                July 2019
                : 11
                : 7
                : 1200
                Affiliations
                [1 ]Department of Mechanical Design Engineering, Graduate School, Chonbuk National University, Jeonju 54896, Korea
                [2 ]Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 54896, Korea
                [3 ]Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 54896, Korea
                Author notes
                Author information
                https://orcid.org/0000-0002-3230-1807
                Article
                polymers-11-01200
                10.3390/polym11071200
                6680839
                31323751
                c629d46a-2249-475e-b41a-83a544ebb051
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 May 2019
                : 12 July 2019
                Categories
                Article

                titanium implants,polycaffeic acid,metallic silver particles,anti-bacterial properties

                Comments

                Comment on this article