15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hematological differences between stingrays at tourist and non-visited sites suggest physiological costs of wildlife tourism

      , , ,
      Biological Conservation
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Ecological and evolutionary traps

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators.

            Stress begins in the brain and affects the brain, as well as the rest of the body. Acute stress responses promote adaptation and survival via responses of neural, cardiovascular, autonomic, immune and metabolic systems. Chronic stress can promote and exacerbate pathophysiology through the same systems that are dysregulated. The burden of chronic stress and accompanying changes in personal behaviors (smoking, eating too much, drinking, poor quality sleep; otherwise referred to as "lifestyle") is called allostatic overload. Brain regions such as hippocampus, prefrontal cortex and amygdala respond to acute and chronic stress and show changes in morphology and chemistry that are largely reversible if the chronic stress lasts for weeks. However, it is not clear whether prolonged stress for many months or years may have irreversible effects on the brain. The adaptive plasticity of chronic stress involves many mediators, including glucocorticoids, excitatory amino acids, endogenous factors such as brain neurotrophic factor (BDNF), polysialated neural cell adhesion molecule (PSA-NCAM) and tissue plasminogen activator (tPA). The role of this stress-induced remodeling of neural circuitry is discussed in relation to psychiatric illnesses, as well as chronic stress and the concept of top-down regulation of cognitive, autonomic and neuroendocrine function. This concept leads to a different way of regarding more holistic manipulations, such as physical activity and social support as an important complement to pharmaceutical therapy in treatment of the common phenomenon of being "stressed out". Policies of government and the private sector play an important role in this top-down view of minimizing the burden of chronic stress and related lifestyle (i.e. allostatic overload).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conservation physiology.

              Conservation biologists increasingly face the need to provide legislators, courts and conservation managers with data on causal mechanisms underlying conservation problems such as species decline. To develop and monitor solutions, conservation biologists are progressively using more techniques that are physiological. Here, we review the emerging discipline of conservation physiology and suggest that, for conservation strategies to be successful, it is important to understand the physiological responses of organisms to their changed environment. New physiological techniques can enable a rapid assessment of the causes of conservation problems and the consequences of conservation actions.
                Bookmark

                Author and article information

                Journal
                Biological Conservation
                Biological Conservation
                Elsevier BV
                00063207
                August 2009
                August 2009
                : 142
                : 8
                : 1818-1829
                Article
                10.1016/j.biocon.2009.03.022
                c6423141-f85a-4b7e-ae88-c724f711421f
                © 2009

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article