1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Towards a Computed-Aided Diagnosis System in Colonoscopy: Automatic Polyp Segmentation Using Convolution Neural Networks

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early diagnosis is essential for the successful treatment of bowel cancers including colorectal cancer (CRC), and capsule endoscopic imaging with robotic actuation can be a valuable diagnostic tool when combined with automated image analysis. We present a deep learning rooted detection and segmentation framework for recognizing lesions in colonoscopy and capsule endoscopy images. We restructure established convolution architectures, such as VGG and ResNets, by converting them into fully-connected convolution networks (FCNs), fine-tune them and study their capabilities for polyp segmentation and detection. We additionally use shape-from-shading (SfS) to recover depth and provide a richer representation of the tissue’s structure in colonoscopy images. Depth is incorporated into our network models as an additional input channel to the RGB information and we demonstrate that the resulting network yields improved performance. Our networks are tested on publicly available datasets and the most accurate segmentation model achieved a mean segmentation interception over union (IU) of 47.78% and 56.95% on the ETIS-Larib and CVC-Colon datasets, respectively. For polyp detection, the top performing models we propose surpass the current state-of-the-art with detection recalls superior to 90% for all datasets tested. To our knowledge, we present the first work to use FCNs for polyp segmentation in addition to proposing a novel combination of SfS and RGB that boosts performance.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: not found
          • Article: not found

          ImageNet Large Scale Visual Recognition Challenge

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?

            Training a deep convolutional neural network (CNN) from scratch is difficult because it requires a large amount of labeled training data and a great deal of expertise to ensure proper convergence. A promising alternative is to fine-tune a CNN that has been pre-trained using, for instance, a large set of labeled natural images. However, the substantial differences between natural and medical images may advise against such knowledge transfer. In this paper, we seek to answer the following central question in the context of medical image analysis: Can the use of pre-trained deep CNNs with sufficient fine-tuning eliminate the need for training a deep CNN from scratch? To address this question, we considered four distinct medical imaging applications in three specialties (radiology, cardiology, and gastroenterology) involving classification, detection, and segmentation from three different imaging modalities, and investigated how the performance of deep CNNs trained from scratch compared with the pre-trained CNNs fine-tuned in a layer-wise manner. Our experiments consistently demonstrated that 1) the use of a pre-trained CNN with adequate fine-tuning outperformed or, in the worst case, performed as well as a CNN trained from scratch; 2) fine-tuned CNNs were more robust to the size of training sets than CNNs trained from scratch; 3) neither shallow tuning nor deep tuning was the optimal choice for a particular application; and 4) our layer-wise fine-tuning scheme could offer a practical way to reach the best performance for the application at hand based on the amount of available data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians.

              We introduce in this paper a novel polyp localization method for colonoscopy videos. Our method is based on a model of appearance for polyps which defines polyp boundaries in terms of valley information. We propose the integration of valley information in a robust way fostering complete, concave and continuous boundaries typically associated to polyps. This integration is done by using a window of radial sectors which accumulate valley information to create WM-DOVA (Window Median Depth of Valleys Accumulation) energy maps related with the likelihood of polyp presence. We perform a double validation of our maps, which include the introduction of two new databases, including the first, up to our knowledge, fully annotated database with clinical metadata associated. First we assess that the highest value corresponds with the location of the polyp in the image. Second, we show that WM-DOVA energy maps can be comparable with saliency maps obtained from physicians' fixations obtained via an eye-tracker. Finally, we prove that our method outperforms state-of-the-art computational saliency results. Our method shows good performance, particularly for small polyps which are reported to be the main sources of polyp miss-rate, which indicates the potential applicability of our method in clinical practice.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Medical Robotics Research
                J. Med. Robot. Res.
                World Scientific Pub Co Pte Ltd
                2424-905X
                2424-9068
                March 13 2018
                June 2018
                March 13 2018
                June 2018
                : 03
                : 02
                : 1840002
                Affiliations
                [1 ]Centre for Medical Image Computing, University College London, London, UK
                [2 ]The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
                [3 ]Department of Computer Science Universitat Autnoma de Barcelona, Barcelona, Spain
                [4 ]Multimedia Laboratory, Corporate Research and Development Center, Toshiba Kawasaki, Japan
                [5 ]UEndoscopy Unit, The Royal Infirmary of Edinburgh, Edinburgh, UK
                [6 ]Department of Surgical Sciences, University of Turin, Turin, Italy
                Article
                10.1142/S2424905X18400020
                c6742b2b-d64f-4b10-823d-432c6b5d4d37
                © 2018
                History

                Comments

                Comment on this article