10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fast diffusion of water nanodroplets on graphene

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diffusion across surfaces generally involves motion on a vibrating but otherwise stationary substrate. Here, using molecular dynamics, we show that a layered material such as graphene opens up a new mechanism for surface diffusion whereby adsorbates are carried by propagating ripples via a motion similar to surfing. For water nanodroplets, we demonstrate that the mechanism leads to exceedingly fast diffusion that is 2-3 orders of magnitude faster than the self-diffusion of water molecules in liquid water. We also reveal the underlying principles that regulate this new mechanism for diffusion and show how it also applies to adsorbates other than water, thus opening up the prospect of achieving fast and controllable motion of adsorbates across material surfaces more generally.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Van der Waals heterostructures

          Research on graphene and other two-dimensional atomic crystals is intense and likely to remain one of the hottest topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first - already remarkably complex - such heterostructures (referred to as 'van der Waals') have recently been fabricated and investigated revealing unusual properties and new phenomena. Here we review this emerging research area and attempt to identify future directions. With steady improvement in fabrication techniques, van der Waals heterostructures promise a new gold rush, rather than a graphene aftershock.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            DREIDING: a generic force field for molecular simulations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The structure of suspended graphene sheets

              The recent discovery of graphene has sparked significant interest, which has so far been focused on the peculiar electronic structure of this material, in which charge carriers mimic massless relativistic particle. However, the structure of graphene - a single layer of carbon atoms densely packed in a honeycomb crystal lattice - is also puzzling. On the one hand, graphene appears to be a strictly two-dimensional (2D) material and exhibits such a high crystal quality that electrons can travel submicron distances without scattering. On the other hand, perfect 2D crystals cannot exist in the free state, according to both theory and experiment. This is often reconciled by the fact that all graphene structures studied so far were an integral part of larger 3D structures, either supported by a bulk substrate or embedded in a 3D matrix. Here we report individual graphene sheets freely suspended on a microfabricated scaffold in vacuum or air. These membranes are only one atom thick and still display a long-range crystalline order. However, our studies by transmission electron microscopy (TEM) have revealed that suspended graphene sheets are not perfectly flat but exhibit intrinsic microscopic roughening such that the surface normal varies by several degrees and out-of-plane deformations reach 1 nm. The atomically-thin single-crystal membranes offer an ample scope for fundamental research and new technologies whereas the observed corrugations in the third dimension may shed light on subtle reasons behind the stability of 2D crystals.
                Bookmark

                Author and article information

                Journal
                2016-11-24
                Article
                10.1038/NMAT4449
                1611.08156
                c6b4381a-62d8-4d7e-94df-4a3bcf3b179c

                http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                Custom metadata
                Nature Materials, 15 (2016) 66-71
                3 figures
                physics.chem-ph cond-mat.mes-hall

                Nanophysics,Physical chemistry
                Nanophysics, Physical chemistry

                Comments

                Comment on this article