Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial titanium/silver PVD coatings on titanium

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD) process.

          Methods

          Coatings with a thickness of approximately 2 μm were deposited on titanium surfaces by simultaneous vaporisation of both metals in an inert argon atmosphere with a silver content of approximately 0.7 – 9% as indicated by energy dispersive X-ray analysis. On these surfaces microorganisms and eukaryotic culture cells were grown.

          Results

          The coatings released sufficient silver ions (0.5–2.3 ppb) when immersed in PBS and showed significant antimicrobial potency against Staphylococcus epidermis and Klebsiella pneumoniae strains. At the same time, no cytotoxic effects of the coatings on osteoblast and epithelial cells were found.

          Conclusion

          Due to similar mechanical performance when compared to pure titanium, the TiAg coatings should be suitable to provide antimicrobial activity on load-bearing implant surfaces.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Osteomyelitis.

          Bone and joint infections are painful for patients and frustrating for both them and their doctors. The high success rates of antimicrobial therapy in most infectious diseases have not yet been achieved in bone and joint infections owing to the physiological and anatomical characteristics of bone. The key to successful management is early diagnosis, including bone sampling for microbiological and pathological examination to allow targeted and long-lasting antimicrobial therapy. The various types of osteomyelitis require differing medical and surgical therapeutic strategies. These types include, in order of decreasing frequency: osteomyelitis secondary to a contiguous focus of infection (after trauma, surgery, or insertion of a joint prosthesis); that secondary to vascular insufficiency (in diabetic foot infections); or that of haematogenous origin. Chronic osteomyelitis is associated with avascular necrosis of bone and formation of sequestrum (dead bone), and surgical debridement is necessary for cure in addition to antibiotic therapy. By contrast, acute osteomyelitis can respond to antibiotics alone. Generally, a multidisciplinary approach is required for success, involving expertise in orthopaedic surgery, infectious diseases, and plastic surgery, as well as vascular surgery, particularly for complex cases with soft-tissue loss.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial silver resistance: molecular biology and uses and misuses of silver compounds.

            Resistance to silver compounds as determined by bacterial plasmids and genes has been defined by molecular genetics. Silver resistance conferred by the Salmonella plasmid pMGH100 involves nine genes in three transcription units. A sensor/responder (SilRS) two-component transcriptional regulatory system governs synthesis of a periplasmic Ag(I)-binding protein (SilE) and two efflux pumps (a P-type ATPase (SilP) plus a three-protein chemiosmotic RND Ag(I)/H+ exchange system (SilCBA)). The same genes were identified on five of 19 additional IncH incompatibility class plasmids but thus far not on other plasmids. Of 70 random enteric isolates from a local hospital, isolates from catheters and other Ag-exposed sites, and total genomes of enteric bacteria, 10 have recognizable sil genes. The centrally located six genes are found and functional in the chromosome of Escherichia coli K-12, and also occur on the genome of E. coli O157:H7. The use of molecular epidemiological tools will establish the range and diversity of such resistance systems in clinical and non-clinical sources. Silver compounds are used widely as effective antimicrobial agents to combat pathogens (bacteria, viruses and eukaryotic microorganisms) in the clinic and for public health hygiene. Silver cations (Ag+) are microcidal at low concentrations and used to treat burns, wounds and ulcers. Ag is used to coat catheters to retard microbial biofilm development. Ag is used in hygiene products including face creams, "alternative medicine" health supplements, supermarket products for washing vegetables, and water filtration cartridges. Ag is generally without adverse effects for humans, and argyria (irreversible discoloration of the skin resulting from subepithelial silver deposits) is rare and mostly of cosmetic concern.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silver ion release from antimicrobial polyamide/silver composites.

              Silver ion (Ag(+)) the versatile antimicrobial species was released in a steady and prolonged manner from a silver-filled polyamide composite system. Metallic silver powder having varying specific surface area (SSA) has been used as a resource of biocide in polyamide. Strong evidences are found showing the release of the antimicrobial species from the resulting composite upon soaking it in water due to the interaction of the diffused water molecules with the dispersed silver powder within the matrix. The Ag(+) release was observed as increasing with time and concentration of the silver powder and is found to be influenced by the SSA of the silver powder, changes in the physical state of the composite specimen as a result of the water diffusion and the composite morphology. It is observed that the Ag(+) release increases initially which is followed by a marginal increase between day 4 and 6. Composites containing higher amounts of silver (4 and 8 wt%) exhibit a further rise in Ag(+) release from the sixth day of storage in water. Composite containing silver particles with the lowest specific surface area (0.78 m(2)/g) showed highest Ag(+) release. SEM shows a finer dispersion of the silver powder (4 wt%) having lowest SSA. However particles with higher (1.16 and 2.5 m(2)/g) SSA possess an agglomerated morphology leading to lower Ag(+) release. The composites are found to release Ag(+) at a concentration level capable of rendering an antimicrobial efficacy.
                Bookmark

                Author and article information

                Journal
                Biomed Eng Online
                BioMedical Engineering OnLine
                BioMed Central (London )
                1475-925X
                2006
                24 March 2006
                : 5
                : 22
                Affiliations
                [1 ]Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
                Article
                1475-925X-5-22
                10.1186/1475-925X-5-22
                1435898
                16556327
                c73d34cb-4555-45c4-b609-77c9ee86496b
                Copyright © 2006 Ewald et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 December 2005
                : 24 March 2006
                Categories
                Research

                Biomedical engineering
                Biomedical engineering

                Comments

                Comment on this article