15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Angiopoietins in Development of Cancer and Neoplasia Associated with Viral Infection

      review-article
      1 , 2 , * , 3 , *
      Cells
      MDPI
      angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), angiogenesis, cancer, neoplasia, oncogenic virus

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angiopoietin/tyrosine protein kinase receptor Tie-2 signaling in endothelial cells plays an essential role in angiogenesis and wound healing. Angiopoietin-1 (Ang-1) is crucial for blood vessel maturation while angiopoietin-2 (Ang-2), in collaboration with vascular endothelial growth factor (VEGF), initiates angiogenesis by destabilizing existing blood vessels. In healthy people, the Ang-1 level is sustained while Ang-2 expression is restricted. In cancer patients, Ang-2 level is elevated, which correlates with poor prognosis. Ang-2 not only drives tumor angiogenesis but also attracts infiltration of myeloid cells. The latter rapidly differentiate into tumor stromal cells that foster tumor angiogenesis and progression, and weaken the host’s anti-tumor immunity. Moreover, through integrin signaling, Ang-2 induces expression of matrix metallopeptidases (MMPs) to promote tumor cell invasion and metastasis. Many oncogenic viruses induce expression of Ang-2 to promote development of neoplasia associated with viral infection. Multiple Ang-2 inhibitors exhibit remarkable anti-tumor activities, further highlighting the importance of Ang-2 in cancer development.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation.

          The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1-mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus-induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2(-/-) mice. Intravital microscopy showed normal TNF-alpha-induced leukocyte rolling in the vasculature of Angpt2(-/-)mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-alpha and modulating TNF-alpha-induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies.

            The angiopoietins Ang-1 and Ang-2 have been identified as ligands with opposing functions of the receptor tyrosine kinase Tie-2 regulating endothelial cell survival and vascular maturation. Ang-1 acts in a paracrine agonistic manner, whereas Ang-2 appears to act primarily as an autocrine antagonistic regulator. To shed further light on the complexity of autocrine/paracrine agonistic/antagonistic functions of the angiopoietin/Tie-2 system, we have studied Ang-2 synthesis and secretion in different populations of wild-type and retrovirally Ang-2-transduced endothelial cells. Endogenous and overexpressed endothelial cell Ang-2 is expressed in a characteristic granular pattern indicative of a cytoplasmic storage granule. Light and electron microscopic double staining revealed Ang-2 colocalization with von Willebrand factor, identifying Ang-2 as a Weibel-Palade body molecule. Costaining with P-selectin showed that storage of Ang-2 and P-selectin in Weibel-Palade bodies is mutually exclusive. Stored Ang-2 has a long half-life of more than 18 hours and can be secreted within minutes of stimulation (eg, by phorbol 12-myristate 13-acetate [PMA], thrombin, and histamine). Collectively, the identification of Ang-2 as a stored, rapidly available molecule in endothelial cells strongly suggests functions of the angiopoietin/Tie-2 system beyond the established roles during angiogenesis likely to be involved in rapid vascular homeostatic reactions such as inflammation and coagulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kaposi sarcoma

              Kaposi sarcoma (KS) gained public attention as an AIDS-defining malignancy; its appearance on the skin was a highly stigmatizing sign of HIV infection during the height of the AIDS epidemic. The widespread introduction of effective antiretrovirals to control HIV by restoring immunocompetence reduced the prevalence of AIDS-related KS, although KS does occur in individuals with well-controlled HIV infection. KS also presents in individuals without HIV infection in older men (classic KS), in sub-Saharan Africa (endemic KS) and in transplant recipients (iatrogenic KS). The aetiologic agent of KS is KS herpesvirus (KSHV; also known as human herpesvirus-8), and viral proteins can induce KS-associated cellular changes that enable the virus to evade the host immune system and allow the infected cell to survive and proliferate despite viral infection. Currently, most cases of KS occur in sub-Saharan Africa, where KSHV infection is prevalent owing to transmission by saliva in childhood compounded by the ongoing AIDS epidemic. Treatment for early AIDS-related KS in previously untreated patients should start with the control of HIV with antiretrovirals, which frequently results in KS regression. In advanced-stage KS, chemotherapy with pegylated liposomal doxorubicin or paclitaxel is the most common treatment, although it is seldom curative. In sub-Saharan Africa, KS continues to have a poor prognosis. Newer treatments for KS based on the mechanisms of its pathogenesis are being explored.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                18 February 2020
                February 2020
                : 9
                : 2
                : 457
                Affiliations
                [1 ]State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, China
                [2 ]Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
                [3 ]Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
                Author notes
                [* ]Correspondence: yxiaolan@ 123456163.com (X.Y.); fxy63@ 123456case.edu (F.Y.); Tel.: +086-27-88661237 (X.Y.); +216-368-8892 (F.Y.)
                Article
                cells-09-00457
                10.3390/cells9020457
                7072744
                32085414
                c7833834-91ff-4a90-b289-aa844dcfc1c7
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 January 2020
                : 13 February 2020
                Categories
                Review

                angiopoietin-1 (ang-1),angiopoietin-2 (ang-2),angiogenesis,cancer,neoplasia,oncogenic virus

                Comments

                Comment on this article