2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Energy consumption in membrane capacitive deionization and comparison with reverse osmosis

      , ,
      Desalination
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Reverse osmosis desalination: water sources, technology, and today's challenges.

          Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design. Two distinct branches of reverse osmosis desalination have emerged: seawater reverse osmosis and brackish water reverse osmosis. Differences between the two water sources, including foulants, salinity, waste brine (concentrate) disposal options, and plant location, have created significant differences in process development, implementation, and key technical problems. Pretreatment options are similar for both types of reverse osmosis and depend on the specific components of the water source. Both brackish water and seawater reverse osmosis (RO) will continue to be used worldwide; new technology in energy recovery and renewable energy, as well as innovative plant design, will allow greater use of desalination for inland and rural communities, while providing more affordable water for large coastal cities. A wide variety of research and general information on RO desalination is available; however, a direct comparison of seawater and brackish water RO systems is necessary to highlight similarities and differences in process development. This article brings to light key parameters of an RO process and process modifications due to feed water characteristics.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Review on the science and technology of water desalination by capacitive deionization

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The state of desalination and brine production: A global outlook

              Rising water demands and diminishing water supplies are exacerbating water scarcity in most world regions. Conventional approaches relying on rainfall and river runoff in water scarce areas are no longer sufficient to meet human demands. Unconventional water resources, such as desalinated water, are expected to play a key role in narrowing the water demand-supply gap. Our synthesis of desalination data suggests that there are 15,906 operational desalination plants producing around 95 million m3/day of desalinated water for human use, of which 48% is produced in the Middle East and North Africa region. A major challenge associated with desalination technologies is the production of a typically hypersaline concentrate (termed 'brine') discharge that requires disposal, which is both costly and associated with negative environmental impacts. Our estimates reveal brine production to be around 142 million m3/day, approximately 50% greater than previous quantifications. Brine production in Saudi Arabia, UAE, Kuwait and Qatar accounts for 55% of the total global share. Improved brine management strategies are required to limit the negative environmental impacts and reduce the economic cost of disposal, thereby stimulating further developments in desalination facilities to safeguard water supplies for current and future generations.
                Bookmark

                Author and article information

                Journal
                Desalination
                Desalination
                Elsevier BV
                00119164
                August 2020
                August 2020
                : 488
                : 114383
                Article
                10.1016/j.desal.2020.114383
                c788cd54-bd29-44a1-920e-aa45bf831072
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article