20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vivo study of doxorubicin-loaded cell-penetrating peptide-modified pH-sensitive liposomes: biocompatibility, bio-distribution, and pharmacodynamics in BALB/c nude mice bearing human breast tumors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In vivo evaluation of drug delivery vectors is essential for clinical translation. In BALB/c nude mice bearing human breast cancer tumors, we investigated the biocompatibility, pharmacokinetics, and pharmacodynamics of doxorubicin (DOX)-loaded novel cell-penetrating peptide (CPP)-modified pH-sensitive liposomes (CPPL) (referred to as CPPL(DOX)) with an optimal CPP density of 4%. In CPPL, a polyethylene glycol (PEG) derivative formed by conjugating PEG with stearate via acid-degradable hydrazone bond (PEG2000-Hz-stearate) was inserted into the surface of liposomes, and CPP was directly attached to liposome surfaces via coupling with stearate to simultaneously achieve long circulation time in blood and improve the selectivity and efficacy of CPP for tumor targeting. Compared to PEGylated liposomes, CPPL enhanced DOX accumulation in tumors up to 1.9-fold ( p<0.01) and resulted in more cell apoptosis as a result of DNA disruption as well as a relatively lower tumor growth ratio (T/C%). Histological examination did not show any signs of necrosis or inflammation in normal tissues, but large cell dissolving areas were found in tumors following the treatment of animals with CPPL(DOX). Our findings provide important and detailed information regarding the distribution of CPPL(DOX) in vivo and reveal their abilities of tumor penetration and potential for the treatment of breast cancer.

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment.

          Arginine-rich cell-penetrating peptides (AR-CPPs) are very promising tools for the delivery of therapeutic macromolecules such as peptides, proteins, and nucleic acids. These peptides allow efficient internalization of the linked cargos intracellularly through the endocytic pathway. However, when linked to bulky cargos, entrapment in the endocytic vesicles is a major limitation to the application of these peptides in cytosolic delivery. Attachment of a compatible endosomal escape device is, therefore, necessary to allow cytosolic delivery of the peptide-attached cargo. This review presents different endosomal escape devices currently in application in combination with AR-CPPs. Applications of fusogenic lipids, membrane-disruptive peptides, membrane-disruptive polymers, lysosomotropic agents, and photochemical internalization to enhance the cytosolic delivery of AR-CPPs-attached cargos are presented. The properties of each system and its mechanism of action for the enhancement of endosomal escape are discussed, together with its applications for the delivery of different macromolecules in vitro and, if applicable, in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes.

            We and a Dutch group reported that "empty" PEGylated liposomes (approximately 100 nm) lose their long-circulating characteristic when they are administrated twice in the same animal with certain intervals (referred to as the accelerated blood clearance (ABC) phenomenon). Very recently, we showed that anti-PEG IgM, induced by the first dose of "empty" PEGylated liposomes, is responsible for inducing the phenomenon, based on the observation that IgM thus produced selectively binds to the surface of subsequently injected PEGylated liposomes, leading to substantial complement activation. It is generally believed that nanocarriers coated with a polymer, such as PEG, have no or lower immunogenicity. However, the results indicated evidence that unexpected immune responses occur even to such polymer-coated liposomes. Such immunogenicity of "empty" liposomes presents a serious concern in the development of liposomal formulations and their use in the clinic. In addition, through series of our studies, it was demonstrated that the magnitude of the ABC phenomenon depends on the physicochemical property of injected liposomes as a first dose, time interval between injection, lipid dose and drug-encapsulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals.

              Chemotherapy for brain glioma has been of limited value due to the inability of transport of drug across the blood-brain barrier (BBB) and poor penetration of drug into the tumor. For overcoming these hurdles, the dual-targeting daunorubicin liposomes were developed by conjugating with p-aminophenyl-alpha-D-manno-pyranoside (MAN) and transferrin (TF) for transporting drug across the BBB and then targeting brain glioma. The dual-targeting effects were evaluated on the BBB model in vitro, C6 glioma cells in vitro, avascular C6 glioma tumor spheroids in vitro, and C6 glioma-bearing rats in vivo, respectively. After applying dual-targeting daunorubicin liposomes, the transport ratio across the BBB model was significantly increased up to 24.9%. The most significant uptake by C6 glioma was evidenced by flow cytometry and confocal microscope. The C6 glioma spheroid volume ratio was significantly lowered to 54.7%. The inhibitory rate to C6 glioma cells after crossing the BBB was significantly enhanced up to 64.0%. The median survival time of tumor bearing rats after administering dual-targeting daunorubicin liposomes (22 days) was significantly longer than that after giving free daunorubicin (17 days, P=0.001) or other controls. In conclusion, the dual-targeting daunorubicin liposomes are able to improve the therapeutic efficacy of brain glioma in vitro and in animals. Copyright 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2017
                26 October 2017
                : 11
                : 3105-3117
                Affiliations
                [1 ]Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
                [2 ]School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing
                [3 ]School of Medicine, Jianghan University, Wuhan, People’s Republic of China
                [4 ]Department of Chemistry and Biochemistry, Kent State University Geauga, Burton, OH, USA
                Author notes
                Correspondence: Ying Xie, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, People’s Republic of China, Tel +86 10 8280 1508, Fax +86 10 8280 2745, Email bmuxieying@ 123456bjmu.edu.cn
                [*]

                These authors contributed equally to this work

                Article
                dddt-11-3105
                10.2147/DDDT.S149814
                5661853
                c7ae4079-2f58-4d12-b4bf-6dd4ec4daa07
                © 2017 Ding et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                tumor targeting,tunel stain,hemolysis,therapy for breast cancer,pharmacokinetics

                Comments

                Comment on this article