7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Association of Oxidative Stress in the Uvular Mucosa with Obstructive Sleep Apnea Syndrome: A Clinical Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hypothesis that individuals with obstructive sleep apnea syndrome (OSAS) demonstrate oxidative stress in the uvular mucosa that correlates with OSAS occurrence was investigated. A total of 128 participants (mean age 45.8, mean body mass index 30.7, female–male ratio 1:20) were divided into the non-OSAS group (apnea–hypopnea index—AHI < 5) and OSAS-group (AHI ≥ 5), in which mild (5 ≤ AHI < 15), moderate (15 ≤ AHI < 30), and severe (AHI ≥ 30) sub-groups were distinguished. Laryngological examination, Epworth Sleep Scale questionnaire, and home sleep study were performed to obtain AHI, mean oxygen saturation, and lowest oxygen saturation. Total oxidative status (TOS) and total antioxidative status (TAS) were assayed in the uvular mucosa taken during palatoplasty or palatopharyngoplasty. The severity of oxidative stress was expressed as oxidative stress index (OSI). Oxidative/reductive imbalance was noted in the mucosa of the uvula of OSAS individuals, and TAS of the uvular mucosa negatively correlated with the severity of this syndrome. TOS and OSI in the mild, moderate, and severe OSAS were higher than in the non-OSAS group, whereas TAS of the uvular mucosa in the OSAS group was lower compared to the non-OSAS group. In conclusion, oxidative stress in the uvular mucosa is associated with the occurrence of OSAS.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          A new method for measuring daytime sleepiness: the Epworth sleepiness scale.

          The development and use of a new scale, the Epworth sleepiness scale (ESS), is described. This is a simple, self-administered questionnaire which is shown to provide a measurement of the subject's general level of daytime sleepiness. One hundred and eighty adults answered the ESS, including 30 normal men and women as controls and 150 patients with a range of sleep disorders. They rated the chances that they would doze off or fall asleep when in eight different situations commonly encountered in daily life. Total ESS scores significantly distinguished normal subjects from patients in various diagnostic groups including obstructive sleep apnea syndrome, narcolepsy and idiopathic hypersomnia. ESS scores were significantly correlated with sleep latency measured during the multiple sleep latency test and during overnight polysomnography. In patients with obstructive sleep apnea syndrome ESS scores were significantly correlated with the respiratory disturbance index and the minimum SaO2 recorded overnight. ESS scores of patients who simply snored did not differ from controls.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Free radicals and antioxidants in normal physiological functions and human disease.

            Reactive oxygen species (ROS) and reactive nitrogen species (RNS, e.g. nitric oxide, NO(*)) are well recognised for playing a dual role as both deleterious and beneficial species. ROS and RNS are normally generated by tightly regulated enzymes, such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. Overproduction of ROS (arising either from mitochondrial electron-transport chain or excessive stimulation of NAD(P)H) results in oxidative stress, a deleterious process that can be an important mediator of damage to cell structures, including lipids and membranes, proteins, and DNA. In contrast, beneficial effects of ROS/RNS (e.g. superoxide radical and nitric oxide) occur at low/moderate concentrations and involve physiological roles in cellular responses to noxia, as for example in defence against infectious agents, in the function of a number of cellular signalling pathways, and the induction of a mitogenic response. Ironically, various ROS-mediated actions in fact protect cells against ROS-induced oxidative stress and re-establish or maintain "redox balance" termed also "redox homeostasis". The "two-faced" character of ROS is clearly substantiated. For example, a growing body of evidence shows that ROS within cells act as secondary messengers in intracellular signalling cascades which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. This review will describe the: (i) chemistry and biochemistry of ROS/RNS and sources of free radical generation; (ii) damage to DNA, to proteins, and to lipids by free radicals; (iii) role of antioxidants (e.g. glutathione) in the maintenance of cellular "redox homeostasis"; (iv) overview of ROS-induced signaling pathways; (v) role of ROS in redox regulation of normal physiological functions, as well as (vi) role of ROS in pathophysiological implications of altered redox regulation (human diseases and ageing). Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), rheumatoid arthritis, and ageing. Topics of current debate are also reviewed such as the question whether excessive formation of free radicals is a primary cause or a downstream consequence of tissue injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine.

              The American Academy of Sleep Medicine (AASM) Sleep Apnea Definitions Task Force reviewed the current rules for scoring respiratory events in the 2007 AASM Manual for the Scoring and Sleep and Associated Events to determine if revision was indicated. The goals of the task force were (1) to clarify and simplify the current scoring rules, (2) to review evidence for new monitoring technologies relevant to the scoring rules, and (3) to strive for greater concordance between adult and pediatric rules. The task force reviewed the evidence cited by the AASM systematic review of the reliability and validity of scoring respiratory events published in 2007 and relevant studies that have appeared in the literature since that publication. Given the limitations of the published evidence, a consensus process was used to formulate the majority of the task force recommendations concerning revisions.The task force made recommendations concerning recommended and alternative sensors for the detection of apnea and hypopnea to be used during diagnostic and positive airway pressure (PAP) titration polysomnography. An alternative sensor is used if the recommended sensor fails or the signal is inaccurate. The PAP device flow signal is the recommended sensor for the detection of apnea, hypopnea, and respiratory effort related arousals (RERAs) during PAP titration studies. Appropriate filter settings for recording (display) of the nasal pressure signal to facilitate visualization of inspiratory flattening are also specified. The respiratory inductance plethysmography (RIP) signals to be used as alternative sensors for apnea and hypopnea detection are specified. The task force reached consensus on use of the same sensors for adult and pediatric patients except for the following: (1) the end-tidal PCO(2) signal can be used as an alternative sensor for apnea detection in children only, and (2) polyvinylidene fluoride (PVDF) belts can be used to monitor respiratory effort (thoracoabdominal belts) and as an alternative sensor for detection of apnea and hypopnea (PVDFsum) only in adults.The task force recommends the following changes to the 2007 respiratory scoring rules. Apnea in adults is scored when there is a drop in the peak signal excursion by ≥ 90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), PAP device flow (titration study), or an alternative apnea sensor, for ≥ 10 seconds. Hypopnea in adults is scored when the peak signal excursions drop by ≥ 30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ 10 seconds in association with either ≥ 3% arterial oxygen desaturation or an arousal. Scoring a hypopnea as either obstructive or central is now listed as optional, and the recommended scoring rules are presented. In children an apnea is scored when peak signal excursions drop by ≥ 90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), PAP device flow (titration study), or an alternative sensor; and the event meets duration and respiratory effort criteria for an obstructive, mixed, or central apnea. A central apnea is scored in children when the event meets criteria for an apnea, there is an absence of inspiratory effort throughout the event, and at least one of the following is met: (1) the event is ≥ 20 seconds in duration, (2) the event is associated with an arousal or ≥ 3% oxygen desaturation, (3) (infants under 1 year of age only) the event is associated with a decrease in heart rate to less than 50 beats per minute for at least 5 seconds or less than 60 beats per minute for 15 seconds. A hypopnea is scored in children when the peak signal excursions drop is ≥ 30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ the duration of 2 breaths in association with either ≥ 3% oxygen desaturation or an arousal. In children and adults, surrogates of the arterial PCO(2) are the end-tidal PCO(2) or transcutaneous PCO(2) (diagnostic study) or transcutaneous PCO(2) (titration study). For adults, sleep hypoventilation is scored when the arterial PCO(2) (or surrogate) is > 55 mm Hg for ≥ 10 minutes or there is an increase in the arterial PCO(2) (or surrogate) ≥ 10 mm Hg (in comparison to an awake supine value) to a value exceeding 50 mm Hg for ≥ 10 minutes. For pediatric patients hypoventilation is scored when the arterial PCO(2) (or surrogate) is > 50 mm Hg for > 25% of total sleep time. In adults Cheyne-Stokes breathing is scored when both of the following are met: (1) there are episodes of ≥ 3 consecutive central apneas and/or central hypopneas separated by a crescendo and decrescendo change in breathing amplitude with a cycle length of at least 40 seconds (typically 45 to 90 seconds), and (2) there are five or more central apneas and/or central hypopneas per hour associated with the crescendo/decrescendo breathing pattern recorded over a minimum of 2 hours of monitoring.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                08 March 2021
                March 2021
                : 10
                : 5
                : 1132
                Affiliations
                [1 ]Department of Otolaryngology, Medical University of Bialystok, 15-089 Bialystok, Poland
                [2 ]Department of Toxicology, Medical University of Bialystok, 15-089 Bialystok, Poland; joanna.rogalska@ 123456umb.edu.pl (J.R.); malgorzata.brzoska@ 123456umb.edu.pl (M.M.B.)
                Author notes
                Author information
                https://orcid.org/0000-0002-9993-9266
                https://orcid.org/0000-0002-3023-0056
                Article
                jcm-10-01132
                10.3390/jcm10051132
                7962821
                33800385
                c81f582d-1c8e-467e-982f-266e8178003e
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 February 2021
                : 05 March 2021
                Categories
                Article

                obstructive sleep apnea,oxidative/reductive status,oxidative stress,sleep surgery,uvular mucosa

                Comments

                Comment on this article