21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Physiological stress response, reflex impairment, and survival of five sympatric shark species following experimental capture and release

      , , ,
      Marine Ecology Progress Series
      Inter-Research Science Center

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological stress in ecology: lessons from biomedical research.

          Increasingly, levels of the 'stress hormones' cortisol and corticosterone are being used by ecologists as indicators of physiological stress in wild vertebrates. The amplitude of hormonal response is assumed to correlate with the overall health of an animal and, by extension, the health of the population. However, much of what is known about the physiology of stress has been elucidated by the biomedical research community. I summarize five physiological mechanisms that regulate hormone release during stress that should be useful to ecologists and conservationists. Incorporating these physiological mechanisms into the design and interpretation of ecological studies will make these increasingly popular studies of stress in ecological settings more rigorous.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biotelemetry: a mechanistic approach to ecology.

            Remote measurement of the physiology, behaviour and energetic status of free-living animals is made possible by a variety of techniques that we refer to collectively as 'biotelemetry'. This set of tools ranges from transmitters that send their signals to receivers up to a few kilometers away to those that send data to orbiting satellites and, more frequently, to devices that log data. They enable researchers to document, for long uninterrupted periods, how undisturbed organisms interact with each other and their environment in real time. In spite of advances enabling the monitoring of many physiological and behavioural variables across a range of taxa of various sizes, these devices have yet to be embraced widely by the ecological community. Our review suggests that this technology has immense potential for research in basic and applied animal ecology. Efforts to incorporate biotelemetry into broader ecological research programs should yield novel information that has been challenging to collect historically from free-ranging animals in their natural environments. Examples of research that would benefit from biotelemetry include the assessment of animal responses to different anthropogenic perturbations and the development of life-time energy budgets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conservation physiology.

              Conservation biologists increasingly face the need to provide legislators, courts and conservation managers with data on causal mechanisms underlying conservation problems such as species decline. To develop and monitor solutions, conservation biologists are progressively using more techniques that are physiological. Here, we review the emerging discipline of conservation physiology and suggest that, for conservation strategies to be successful, it is important to understand the physiological responses of organisms to their changed environment. New physiological techniques can enable a rapid assessment of the causes of conservation problems and the consequences of conservation actions.
                Bookmark

                Author and article information

                Journal
                Marine Ecology Progress Series
                Mar. Ecol. Prog. Ser.
                Inter-Research Science Center
                0171-8630
                1616-1599
                January 27 2014
                January 27 2014
                : 496
                :
                : 207-218
                Article
                10.3354/meps10490
                c82fe853-a57f-490f-9d26-9cad075a586f
                © 2014
                Product
                Self URI (article page): http://www.int-res.com/abstracts/meps/v496/p207-218/

                Comments

                Comment on this article