75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hemostasis during low molecular weight heparin anticoagulation for continuous venovenous hemofiltration: a randomized cross-over trial comparing two hemofiltration rates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Renal insufficiency increases the half-life of low molecular weight heparins (LMWHs). Whether continuous venovenous hemofiltration (CVVH) removes LMWHs is unsettled. We studied hemostasis during nadroparin anticoagulation for CVVH, and explored the implication of the endogenous thrombin potential (ETP).

          Methods

          This cross-over study, performed in a 20-bed teaching hospital ICU, randomized non-surgical patients with acute kidney injury requiring nadroparin for CVVH to compare hemostasis between two doses of CVVH: filtrate flow was initiated at 4 L/h and converted to 2 L/h after 60 min in group 1, and vice versa in group 2. Patients received nadroparin 2850 IU i.v., followed by 380 IU/h continuously in the extracorporeal circuit. After baseline sampling, ultrafiltrate, arterial (art) and postfilter (PF) blood was taken for hemostatic markers after 1 h, and 15 min, 6 h, 12 h and 24 h after converting filtrate flow. We compared randomized groups, and 'early circuit clotting' to 'normal circuit life' groups.

          Results

          Fourteen patients were randomized, seven to each group. Despite randomization, group 1 had higher SOFA scores (median 14 (IQR 11-15) versus 9 (IQR 5-9), p = 0.004). Anti-Xa art activity peaked upon nadroparin bolus and declined thereafter (p = 0.05). Anti-Xa PF did not change in time. Anti-Xa activity was not detected in ultrafiltrate. Medians of all anti-Xa samples were lower in group 1 (anti-Xa art 0.19 (0.12-0.37) vs. 0.31 (0.23-0.52), p = 0.02; anti-Xa PF 0.34 (0.25-0.44) vs. 0.51 (0.41-0.76), p = 0.005). After a steep decline, arterial ETP AUC tended to increase (p = 0.06), opposite to anti-Xa, while postfilter ETP AUC increased (p = 0.001). Median circuit life was 24.5 h (IQR 12-37 h). Patients with 'short circuit life' had longer baseline prothrombin time (PTT), activated thromboplastin time (aPTT), lower ETP, higher thrombin-antithrombin complexes (TAT) and higher SOFA scores; during CVVH, anti-Xa, and platelets were lower; PTT, aPTT, TAT and D-dimers were longer/higher and ETP was slower and depressed.

          Conclusions

          We found no accumulation and no removal of LMWH activity during CVVH. However, we found that early circuit clotting was associated with more severe organ failure, prior systemic thrombin generation with consumptive coagulopathy, heparin resistance and elevated extracorporeal thrombin generation. ETP integrates these complex effects on the capacity to form thrombin.

          Trial registration

          Clinicaltrials.gov ID NCT00965328

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults.

          The objective of this study was to refine the APACHE (Acute Physiology, Age, Chronic Health Evaluation) methodology in order to more accurately predict hospital mortality risk for critically ill hospitalized adults. We prospectively collected data on 17,440 unselected adult medical/surgical intensive care unit (ICU) admissions at 40 US hospitals (14 volunteer tertiary-care institutions and 26 hospitals randomly chosen to represent intensive care services nationwide). We analyzed the relationship between the patient's likelihood of surviving to hospital discharge and the following predictive variables: major medical and surgical disease categories, acute physiologic abnormalities, age, preexisting functional limitations, major comorbidities, and treatment location immediately prior to ICU admission. The APACHE III prognostic system consists of two options: (1) an APACHE III score, which can provide initial risk stratification for severely ill hospitalized patients within independently defined patient groups; and (2) an APACHE III predictive equation, which uses APACHE III score and reference data on major disease categories and treatment location immediately prior to ICU admission to provide risk estimates for hospital mortality for individual ICU patients. A five-point increase in APACHE III score (range, 0 to 299) is independently associated with a statistically significant increase in the relative risk of hospital death (odds ratio, 1.10 to 1.78) within each of 78 major medical and surgical disease categories. The overall predictive accuracy of the first-day APACHE III equation was such that, within 24 h of ICU admission, 95 percent of ICU admissions could be given a risk estimate for hospital death that was within 3 percent of that actually observed (r2 = 0.41; receiver operating characteristic = 0.90). Recording changes in the APACHE III score on each subsequent day of ICU therapy provided daily updates in these risk estimates. When applied across the individual ICUs, the first-day APACHE III equation accounted for the majority of variation in observed death rates (r2 = 0.90, p less than 0.0001).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Citrate anticoagulation for continuous venovenous hemofiltration.

              Continuous venovenous hemofiltration (CVVH) is applied in critically ill patients with acute renal failure for renal replacement. Heparins used to prevent circuit clotting may cause bleeding. Regional anticoagulation with citrate reduces bleeding, but has metabolic risks. The aim was to compare the safety and efficacy of the two. Randomized, nonblinded, controlled single-center trial. General intensive care unit of a teaching hospital. Adult critically ill patients needing CVVH for acute renal failure and without an increased bleeding risk. Regional anticoagulation with citrate or systemic anticoagulation with the low-molecular weight heparin nadroparin. End points were adverse events necessitating discontinuation of study anticoagulant, transfusion, metabolic and clinical outcomes, and circuit survival. Of the 215 randomized patients, 200 received CVVH per protocol (97 citrate and 103 nadroparin). Adverse events required discontinuation of citrate in two patients (accumulation and clotting) of nadroparin in 20 (bleeding and thrombocytopenia) (p < 0.001). Bleeding occurred in 6 vs. 16 patients (p = 0.08). The median number of red blood cell units transfused per CVVH day was 0.27 (interquartile range, 0.0-0.63) for citrate, 0.36 (interquartile range, 0-0.83) for nadroparin (p = 0.31). Citrate conferred less metabolic alkalosis (p = 0.001) and lower plasma calcium (p < 0.001). Circuit survival was similar. Three-month mortality on intention-to-treat was 48% (citrate) and 63% (nadroparin) (p = 0.03), per protocol 45% and 62% (p = 0.02). Citrate reduced mortality in surgical patients (p = 0.007), sepsis (p = 0.01), higher Sepsis-Related Organ Failure Assessment score (p = 0.006), and lower age (p = 0.009). The efficacy of citrate and nadroparin anticoagulation for CVVH was similar, however, citrate was safer. Unexpectedly, citrate reduced mortality. Less bleeding could only partly explain this benefit, less clotting could not. Post hoc citrate appeared particularly beneficial after surgery, in sepsis and severe multiple organ failure, suggesting interference with inflammation.
                Bookmark

                Author and article information

                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2009
                3 December 2009
                : 13
                : 6
                : R193
                Affiliations
                [1 ]Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Oosterpark 9, 1091 AC Amsterdam, The Netherlands
                [2 ]Department of Clinical Chemistry, Onze Lieve Vrouwe Gasthuis, Oosterpark 9, 1091 AC Amsterdam, The Netherlands
                [3 ]Institutional address: Onze Lieve Vrouwe Gasthuis, PO Box 95500, 1091 AC Amsterdam, The Netherlands
                Article
                cc8191
                10.1186/cc8191
                2811918
                19958532
                c86088c0-c81b-4a8a-8c97-a05107d39999
                Copyright ©2009 Oudemans-van Straaten et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 August 2009
                : 2 October 2009
                : 28 October 2009
                : 3 December 2009
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article