11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The CARM1-p300-c-Myc-Max (CPCM) transcriptional complex regulates the expression of CUL4A/4B and affects the stability of CRL4 E3 ligases in colorectal cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transcription factor c-Myc and two cullin family members CUL4A/4B function as oncogenes in colorectal cancer. Our recent publication reveals that c-Myc specifically activates the expression of CUL4A/4B through binding to their promoters. However, the underlying mechanism of how c-Myc actions in this process is still unknown. Using mass spectrometry and immunoprecipitation assays, we identified c-Myc formed a transcriptional complex with its partner Max (Myc-associated factor X), a histone acetyltransferase p300 and a coactivator associated arginine methyltransferase 1 (CARM1) in the present study. Knockdown or overexpression of the components of CARM1-p300-c-Myc-Max (CPCM) complex resulted in a decrease or increase of CUL4A/4B levels, respectively. Individual knockdown or inhibition of CPCM components decreased cell proliferation, colony formation, and cell invasion. Biochemically, knockdown or inhibition of CPCM components decreased their occupancies on the promoters of CUL4A/ 4B and resulted in their downregulation. Importantly, inhibition of CPCM components also caused a decrease of CRL4 E3 ligase activities and eventually led to an accumulation of ST7 (suppression of tumorigenicity 7), the specific substrate of CRL4 E3 ligases in colorectal cancer. Moreover, the in vivo tumor formation results indicated that knockdown or inhibition of CPCM components significantly decreased the tumor volumes. Together, our results suggest that the CPCM complex mediates explicitly the expression of CUL4A/4B, and thus affects the stability of CRL4 E3 ligases and the ubiquitination of ST7. These results provide more options by targeting the CPCM components to inhibit tumor growth in the therapy of colorectal cancer.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The chromosomal instability pathway in colon cancer.

          The acquisition of genomic instability is a crucial feature in tumor development and there are at least 3 distinct pathways in colorectal cancer pathogenesis: the chromosomal instability (CIN), microsatellite instability, and CpG island methylator phenotype pathways. Most cases of colorectal cancer arise through the CIN pathway, which is characterized by widespread imbalances in chromosome number (aneuploidy) and loss of heterozygosity. It can result from defects in chromosomal segregation, telomere stability, and the DNA damage response, although the full complement of genes underlying CIN remains incompletely described. Coupled with the karyotypic abnormalities observed in CIN tumors are the accumulation of a characteristic set of mutations in specific tumor suppressor genes and oncogenes that activate pathways critical for colorectal cancer initiation and progression. Whether CIN creates the appropriate milieu for the accumulation of these mutations or vice versa remains a provocative and unanswered question. The goal of this review is to provide an updated perspective on the mechanisms that lead to CIN and the key mutations that are acquired in this pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The post-translational modification, SUMOylation, and cancer (Review)

            SUMOylation is a reversible post-translational modification which has emerged as a crucial molecular regulatory mechanism, involved in the regulation of DNA damage repair, immune responses, carcinogenesis, cell cycle progression and apoptosis. Four SUMO isoforms have been identified, which are SUMO1, SUMO2/3 and SUMO4. The small ubiquitin-like modifier (SUMO) pathway is conserved in all eukaryotes and plays pivotal roles in the regulation of gene expression, cellular signaling and the maintenance of genomic integrity. The SUMO catalytic cycle includes maturation, activation, conjugation, ligation and de-modification. The dysregulation of the SUMO system is associated with a number of diseases, particularly cancer. SUMOylation is widely involved in carcinogenesis, DNA damage response, cancer cell proliferation, metastasis and apoptosis. SUMO can be used as a potential therapeutic target for cancer. In this review, we briefly outline the basic concepts of the SUMO system and summarize the involvement of SUMO proteins in cancer cells in order to better understand the role of SUMO in human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60.

              The c-MYC oncoprotein functions as a sequence-specific transcription factor. The ability of c-MYC to activate transcription relies in part on the recruitment of cofactor complexes containing the histone acetyltransferases mammalian GCN5 (mGCN5)/PCAF and TIP60. In addition to acetylating histones, these enzymes have been shown to acetylate other proteins involved in transcription, including sequence-specific transcription factors. This study was initiated in order to determine whether c-MYC is a direct substrate of mGCN5 and TIP60. We report here that mGCN5/PCAF and TIP60 acetylate c-MYC in vivo. By using nanoelectrospray tandem mass spectrometry to examine c-MYC purified from human cells, the major mGCN5-induced acetylation sites have been mapped. Acetylation of c-MYC by either mGCN5/PCAF or TIP60 results in a dramatic increase in protein stability. The data reported here suggest a conserved mechanism by which acetyltransferases regulate c-MYC function by altering its rate of degradation.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2020
                4 February 2020
                : 16
                : 6
                : 1071-1085
                Affiliations
                [1 ]Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
                [2 ]Department of Integrated Traditional and Western Medicine, Chengdu Shangjinnanfu Hospital/West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
                Author notes
                ✉ Corresponding author: Dr. Hong Liu, Department of Integrated Traditional and Western Medicine, West China Hospital, NO. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province, China, 610041. Email: liuhong1980@ 123456scu.edu.cn

                Competing Interests: The authors declare no competing financial, professional or personal interests that might have influenced the performance or presentation of the work described in this manuscript.

                Article
                ijbsv16p1071
                10.7150/ijbs.41230
                7053342
                32140074
                c8ab8069-ba91-4d7e-8878-038340b59253
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 16 October 2019
                : 2 January 2020
                Categories
                Research Paper

                Life sciences
                carm1,p300,cul4a,cul4b,crl4 e3 ligase,colorectal cancer
                Life sciences
                carm1, p300, cul4a, cul4b, crl4 e3 ligase, colorectal cancer

                Comments

                Comment on this article