28
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Neuropsychiatric Disease and Treatment (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on all aspects of neuropsychiatric and neurological disorders. Sign up for email alerts here.

      63,741 Monthly downloads/views I 2.989 Impact Factor I 4.5 CiteScore I 1.09 Source Normalized Impact per Paper (SNIP) I 0.744 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Though new antiepileptic drugs are emerging, approximately a third of epileptic patients still suffer from recurrent convulsions and cognitive dysfunction. Therefore, we tested whether berberine (Ber), a vegetable drug, has an anticonvulsant property and attenuates memory impairment in a pilocarpine (Pilo)-induced epilepsy model in rats. The rats were injected with 400 mg/kg Pilo to induce convulsions, and Ber 25, 50, and 100 mg/kg were administrated by the intragastric route once daily 7 days before Pilo injection until the experiment was over. Convulsions were observed after Pilo injection. For the rats that developed status epilepticus (SE), malondialdehyde, glutathione levels, superoxide dismutase, and catalase activity in the hippocampus were measured 24 hours after SE. The rats received the Morris water-maze test 2 weeks after SE, and then were killed for fluoro-jade B staining to detect the degenerating neurons. We found Ber delayed latency to the first seizure and the time to develop SE in a dose-dependent manner. Malondialdehyde levels were decreased, while glutathione and catalase activity were strengthened in Ber-injected SE rats. In the Morris water-maze test, Ber decreased escape latency compared to saline-treated SE rats. Additionally, Ber reduced the number of fluoro-jade B-positive cells in the hippocampal CA1 region. Our data suggest that Ber exerts anticonvulsant and neuroprotective effects on Pilo-induced epilepsy in rats. Simultaneously, Ber attenuates memory impairment. The beneficial effect may be partly due to mitigation of the oxidative stress burden.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The pilocarpine model of temporal lobe epilepsy

          Understanding the pathophysiogenesis of temporal lobe epilepsy (TLE) largely rests on the use of models of status epilepticus (SE), as in the case of the pilocarpine model. The main features of TLE are: (i) epileptic foci in the limbic system; (ii) an “initial precipitating injury”; (iii) the so-called “latent period”; and (iv) the presence of hippocampal sclerosis leading to reorganization of neuronal networks. Many of these characteristics can be reproduced in rodents by systemic injection of pilocarpine; in this animal model, SE is followed by a latent period and later by the appearance of spontaneous recurrent seizures (SRSs). These processes are, however, influenced by experimental conditions such as rodent species, strain, gender, age, doses and routes of pilocarpine administration, as well as combinations with other drugs administered before and/or after SE. In the attempt to limit these sources of variability, we evaluated the methodological procedures used by several investigators in the pilocarpine model; in particular, we have focused on the behavioural, electrophysiological and histopathological findings obtained with different protocols. We addressed the various experimental approaches published to date, by comparing mortality rates, onset of SRSs, neuronal damage, and network reorganization. Based on the evidence reviewed here, we propose that the pilocarpine model can be a valuable tool to investigate the mechanisms involved in TLE, and even more so when standardized to reduce mortality at the time of pilocarpine injection, differences in latent period duration, variability in the lesion extent, and SRS frequency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence of increased oxidative damage in subjects with mild cognitive impairment.

            To determine if increased levels of oxidative damage are present in the brains of persons with mild cognitive impairment (MCI), a condition that often precedes Alzheimer disease (AD). The authors assessed the amount of protein carbonyls, thiobarbituric acid-reactive substances (TBARS), and malondialdehyde in the superior and middle temporal gyri (SMTG) and cerebellum of short postmortem interval and longitudinally evaluated normal subjects and those with MCI and early AD. Elevated levels of protein carbonyls (approximately 25%), malondialdehyde (approximately 60%), and TBARS (approximately 210%) were observed in the SMTG of individuals with MCI and early AD vs normal control subjects. The elevation in TBARS was associated with the numbers of neuritic but not diffuse plaques. Levels of protein carbonyls increased as delayed verbal memory performance declined. Oxidative damage occurs in the brain of subjects with mild cognitive impairment, suggesting that oxidative damage may be one of the earliest events in the onset and progression of Alzheimer disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats.

              Moderate impairment of learning and memory has been recognized as a complication of diabetes. The present study examined behavioral and electrophysiological measures of cerebral function in streptozotocin (STZ)-induced diabetic rats. Behavioral testing consisted of a spatial learning task in a water maze. Electrophysiological testing consisted of in vitro assessment of hippocampal long-term potentiation (LTP), an activity-dependent form of synaptic plasticity, which is believed to be related to the cellular mechanisms of learning and memory. Two experiments were performed: the first with severely hyperglycemic rats and the second with moderately hyperglycemic rats. Rats were tested in the water maze 11 weeks after induction of diabetes. Next, LTP was measured in vitro in trained animals. Both spatial learning and LTP expression in the CA1 field of the hippocampus were impaired in severely hyperglycemic rats as compared with nondiabetic controls. In contrast, spatial learning and hippocampal LTP were unaffected in moderately hyperglycemic rats. The association of alterations in hippocampal LTP with specific learning impairments has previously been reported in conditions other than diabetes. Our findings suggest that changes in LTP-like forms of synaptic plasticity in the hippocampus, and possibly in other cerebral structures, are involved in learning deficits in STZ-induced diabetes. The beneficial effect of moderate glycemic control on both place learning and hippocampal LTP supports the significance of the relation between these two parameters and indicates that the development of the observed deficits may be related to the level of glycemic control.
                Bookmark

                Author and article information

                Journal
                Neuropsychiatr Dis Treat
                Neuropsychiatr Dis Treat
                Neuropsychiatric Disease and Treatment
                Neuropsychiatric Disease and Treatment
                Dove Medical Press
                1176-6328
                1178-2021
                2014
                13 November 2014
                : 10
                : 2139-2145
                Affiliations
                [1 ]Department of Neurology, First Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
                [2 ]Department of Radiotherapy Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, People’s Republic of China
                [3 ]Department of Neurology, People’s Liberation Army No. 451 Hospital, Xi’an, People’s Republic of China
                [4 ]Department of Scientific Research, First Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
                Author notes
                Correspondence: Ya-jun Li, Department of Neurology, First Affiliated Hospital of Xi’an Medical University, 48 Fenghao West Road, Xi’an, Shaanxi 710077, People’s Republic of China, Email liyajun9@ 123456hotmail.com

                *These authors contributed equally to this work

                Article
                ndt-10-2139
                10.2147/NDT.S73210
                4235502
                25419137
                c8b855cb-1b8c-421e-b4db-08b183c45489
                © 2014 Gao et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Neurology
                status epilepticus,pilocarpine,memory impairment,oxidative stress,neuroprotection
                Neurology
                status epilepticus, pilocarpine, memory impairment, oxidative stress, neuroprotection

                Comments

                Comment on this article