11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly ( p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly ( p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance.

          Biofilms are a protected niche for microorganisms, where they are safe from antibiotic treatment and can create a source of persistent infection. Using two clinically relevant Candida albicans biofilm models formed on bioprosthetic materials, we demonstrated that biofilm formation proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in a polysaccharide matrix. Fluorescence and confocal scanning laser microscopy revealed that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements. In both models, antifungal resistance of biofilm-grown cells increased in conjunction with biofilm formation. The expression of agglutinin-like (ALS) genes, which encode a family of proteins implicated in adhesion to host surfaces, was differentially regulated between planktonic and biofilm-grown cells. The ability of C. albicans to form biofilms contrasts sharply with that of Saccharomyces cerevisiae, which adhered to bioprosthetic surfaces but failed to form a mature biofilm. The studies described here form the basis for investigations into the molecular mechanisms of Candida biofilm biology and antifungal resistance and provide the means to design novel therapies for biofilm-based infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Candida biofilms and their role in infection.

            L. Douglas (2003)
            Pathogenic fungi in the genus Candida can cause both superficial and serious systemic disease, and are now recognized as major agents of hospital-acquired infection. Many Candida infections involve the formation of biofilms on implanted devices such as indwelling catheters or prosthetic heart valves. Biofilms of Candida albicans formed in vitro on catheter material consist of matrix-enclosed microcolonies of yeasts and hyphae, arranged in a bilayer structure. The biofilms are resistant to a range of antifungal agents currently in clinical use, including amphotericin B and fluconazole, and there appear to be multiple resistance mechanisms. Recent studies with mixed biofilms containing Candida and bacterial species suggest that extensive and striking interactions occur between the prokaryotic and eukaryotic cells in these adherent populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound.

              The antifungal activity spectrum of Lactobacillus coryniformis subsp. coryniformis strain Si3 was investigated. The strain had strong inhibitory activity in dual-culture agar plate assays against the molds Aspergillus fumigatus, A. nidulans, Penicillium roqueforti, Mucor hiemalis, Talaromyces flavus, Fusarium poae, F. graminearum, F. culmorum, and F. sporotrichoides. A weaker activity was observed against the yeasts Debaryomyces hansenii, Kluyveromyces marxianus, and Saccharomyces cerevisiae. The yeasts Rhodotorula glutinis, Sporobolomyces roseus, and Pichia anomala were not inhibited. In liquid culture the antifungal activity paralleled growth, with maximum mold inhibition early in the stationary growth phase, but with a rapid decline in antifungal activity after 48 h. The addition of ethanol to the growth medium prevented the decline and gave an increased antifungal activity. The activity was stable during heat treatment and was retained even after autoclaving at 121 degrees C for 15 min. Maximum activity was observed at pH values of between 3. 0 and 4.5, but it decreased rapidly when pH was adjusted to a level between 4.5 and 6.0 and was lost at higher pH values. The antifungal activity was fully regained after readjustment of the pH to the initial value (pH 3.6). The activity was irreversibly lost after treatment with proteolytic enzymes (proteinase K, trypsin, and pepsin). The antifungal activity was partially purified using ion-exchange chromatography and (NH(4))(2)SO(4) precipitation, followed by gel filtration chromatography. The active compound(s) was estimated to have a molecular mass of approximately 3 kDa. This is the first report of the production of a proteinaceous antifungal compound(s) from L. coryniformis subsp. coryniformis.
                Bookmark

                Author and article information

                Journal
                Mycobiology
                Mycobiology
                MB
                Mycobiology
                The Korean Society of Mycology
                1229-8093
                2092-9323
                December 2016
                31 December 2016
                : 44
                : 4
                : 302-309
                Affiliations
                [1 ]Department of Microbiology, Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), 71800 Nilai, Malaysia.
                [2 ]School of Food Science and Technology, Universiti Malaysia Terengganu (UMT), 21030 Kuala Terengganu, Malaysia.
                [3 ]School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia.
                [4 ]Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
                Author notes
                Corresponding author: drzaiton@ 123456usim.edu.my
                Article
                10.5941/MYCO.2016.44.4.302
                5287163
                28154488
                c93492d6-321a-4a65-9081-c4de24813d98
                © The Korean Society of Mycology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 February 2016
                : 18 April 2016
                : 30 November 2016
                Categories
                Research Article

                Plant science & Botany
                antifungal activity,honey,lactic acid bacteria,pathogenic candida species

                Comments

                Comment on this article