21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heterochromatin variation and LINE-1 distribution in Artibeus (Chiroptera, Phyllostomidae) from Central Amazon, Brazil

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Species in the subgenus Artibeus Leach, 1821 are widely distributed in Brazil. Conserved karyotypes characterize the group with identical diploid number and chromosome morphology. Recent studies suggested that the heterochromatin distribution and accumulation patterns can vary among species. In order to assess whether variation can also occur within species, we have analyzed the chromosomal distribution of constitutive heterochromatin in A. planirostris (Spix, 1823) and A. lituratus (Olfers, 1818) from Central Amazon (North Brazil) and contrasted our findings with those reported for other localities in Brazil. In addition, Ag-NOR staining and FISH with 18S rDNA, telomeric, and LINE-1 probes were performed to assess the potential role that these different repetitive markers had in shaping the current architecture of heterochromatic regions. Both species presented interindividual variation of constitutive heterochromatin. In addition, in A. planirostris the centromeres of most chromosomes are enriched with LINE-1, colocated with pericentromeric heterochromatin blocks. Overall, our data indicate that amplification and differential distribution of the investigated repetitive DNAs might have played a significant role in shaping the chromosome architecture of the subgenus Artibeus .

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biology of mammalian L1 retrotransposons.

            L1 retrotransposons comprise 17% of the human genome. Although most L1s are inactive, some elements remain capable of retrotransposition. L1 elements have a long evolutionary history dating to the beginnings of eukaryotic existence. Although many aspects of their retrotransposition mechanism remain poorly understood, they likely integrate into genomic DNA by a process called target primed reverse transcription. L1s have shaped mammalian genomes through a number of mechanisms. First, they have greatly expanded the genome both by their own retrotransposition and by providing the machinery necessary for the retrotransposition of other mobile elements, such as Alus. Second, they have shuffled non-L1 sequence throughout the genome by a process termed transduction. Third, they have affected gene expression by a number of mechanisms. For instance, they occasionally insert into genes and cause disease both in humans and in mice. L1 elements have proven useful as phylogenetic markers and may find other practical applications in gene discovery following insertional mutagenesis in mice and in the delivery of therapeutic genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative Analysis of Transposable Elements Highlights Mobilome Diversity and Evolution in Vertebrates

              Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages.
                Bookmark

                Author and article information

                Journal
                Comp Cytogenet
                Comp Cytogenet
                CompCytogen
                Comparative Cytogenetics
                Pensoft Publishers
                1993-0771
                1993-078X
                2017
                14 September 2017
                : 11
                : 4
                : 613-626
                Affiliations
                [1 ] Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
                [2 ] Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
                [3 ] Universidade Federal da Integração Latino Americana, Laboratório de Genética, Av. Tarquínio Joslin dos Santos, 1000, Jardim Universitário, 85857-190, Foz do Iguaçu, PR, Brazil
                [4 ] Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA 79409
                [5 ] Laboratório de Genética e Citogenética Animal e Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária; CEP:50740-600; Recife-PE, Brazil
                Author notes
                Corresponding author: Érica Martinha Silva de Souza ( souza.ems@ 123456hotmail.com )

                Academic editor: E. Gornung

                Article
                10.3897/CompCytogen.v11i4.14562
                5672158
                c9691219-b4ea-4eee-b04f-7e0fb5b046a3
                Érica Martinha Silva de Souza, Maria Claudia Gross, Carlos Eduardo Faresin e Silva, Cibele Gomes Sotero-Caio, Eliana Feldberg

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 June 2017
                : 9 August 2017
                Categories
                Short Communication

                bats,chromosomes,cytogenetics,fish,repetitive dna,stenodermatinae

                Comments

                Comment on this article