9
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ambient air pollution and risk of respiratory infection among adults: evidence from the multiethnic study of atherosclerosis (MESA)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Air pollution may affect the risk of respiratory infection, though research has focused on uncommon infections or infections in children. Whether ambient air pollutants increase the risk of common acute respiratory infections among adults is uncertain, yet this may help understand whether pollutants influence spread of pandemic respiratory infections like COVID-19.

          Objective

          To estimate the association between ambient air pollutant exposures and respiratory infections in adults.

          Methods

          During five study examinations over 12 years, 6536 participants in the multiethnic study of atherosclerosis (MESA) reported upper respiratory tract infections, bronchitis, pneumonia or febrile illness in the preceding 2 weeks. Using a validated spatiotemporal model, we estimated residential concentrations of ambient PM 2.5, NO x and NO 2 for the 2–6 weeks (short-term) and year (long-term) prior to each examination.

          Results

          In this population aged 44–84 years at baseline, 10%–32% of participants reported a recent respiratory infection, depending on month of examination and study region. PM 2.5, NO x and NO 2 concentrations over the prior 2–6 weeks were associated with increased reporting of recent respiratory infection, with risk ratios (95% CIs) of 1.04 (1.00 to 1.09), 1.15 (1.10 to 1.20) and 1.21 (1.10 to 1.33), respectively, per increase from 25th to 75th percentile in residential pollutant concentration.

          Conclusion

          Higher short-term exposure to PM 2.5 and traffic-related pollutants are associated with increased risk of symptomatic acute respiratory infections among adults. These findings may provide an insight into the epidemiology of COVID-19.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015

          Summary Background Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. Methods We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure–response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure–response functions spanning the global range of exposure. Findings Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000–422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Interpretation Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Funding Bill & Melinda Gates Foundation and Health Effects Institute.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The contribution of outdoor air pollution sources to premature mortality on a global scale.

            Assessment of the global burden of disease is based on epidemiological cohort studies that connect premature mortality to a wide range of causes, including the long-term health impacts of ozone and fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5). It has proved difficult to quantify premature mortality related to air pollution, notably in regions where air quality is not monitored, and also because the toxicity of particles from various sources may vary. Here we use a global atmospheric chemistry model to investigate the link between premature mortality and seven emission source categories in urban and rural environments. In accord with the global burden of disease for 2010 (ref. 5), we calculate that outdoor air pollution, mostly by PM2.5, leads to 3.3 (95 per cent confidence interval 1.61-4.81) million premature deaths per year worldwide, predominantly in Asia. We primarily assume that all particles are equally toxic, but also include a sensitivity study that accounts for differential toxicity. We find that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity. Model projections based on a business-as-usual emission scenario indicate that the contribution of outdoor air pollution to premature mortality could double by 2050.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

              Summary Background Lower respiratory infections are a leading cause of morbidity and mortality around the world. The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016, provides an up-to-date analysis of the burden of lower respiratory infections in 195 countries. This study assesses cases, deaths, and aetiologies spanning the past 26 years and shows how the burden of lower respiratory infection has changed in people of all ages. Methods We used three separate modelling strategies for lower respiratory infections in GBD 2016: a Bayesian hierarchical ensemble modelling platform (Cause of Death Ensemble model), which uses vital registration, verbal autopsy data, and surveillance system data to predict mortality due to lower respiratory infections; a compartmental meta-regression tool (DisMod-MR), which uses scientific literature, population representative surveys, and health-care data to predict incidence, prevalence, and mortality; and modelling of counterfactual estimates of the population attributable fraction of lower respiratory infection episodes due to Streptococcus pneumoniae, Haemophilus influenzae type b, influenza, and respiratory syncytial virus. We calculated each modelled estimate for each age, sex, year, and location. We modelled the exposure level in a population for a given risk factor using DisMod-MR and a spatio-temporal Gaussian process regression, and assessed the effectiveness of targeted interventions for each risk factor in children younger than 5 years. We also did a decomposition analysis of the change in LRI deaths from 2000–16 using the risk factors associated with LRI in GBD 2016. Findings In 2016, lower respiratory infections caused 652 572 deaths (95% uncertainty interval [UI] 586 475–720 612) in children younger than 5 years (under-5s), 1 080 958 deaths (943 749–1 170 638) in adults older than 70 years, and 2 377 697 deaths (2 145 584–2 512 809) in people of all ages, worldwide. Streptococcus pneumoniae was the leading cause of lower respiratory infection morbidity and mortality globally, contributing to more deaths than all other aetiologies combined in 2016 (1 189 937 deaths, 95% UI 690 445–1 770 660). Childhood wasting remains the leading risk factor for lower respiratory infection mortality among children younger than 5 years, responsible for 61·4% of lower respiratory infection deaths in 2016 (95% UI 45·7–69·6). Interventions to improve wasting, household air pollution, ambient particulate matter pollution, and expanded antibiotic use could avert one under-5 death due to lower respiratory infection for every 4000 children treated in the countries with the highest lower respiratory infection burden. Interpretation Our findings show substantial progress in the reduction of lower respiratory infection burden, but this progress has not been equal across locations, has been driven by decreases in several primary risk factors, and might require more effort among elderly adults. By highlighting regions and populations with the highest burden, and the risk factors that could have the greatest effect, funders, policy makers, and programme implementers can more effectively reduce lower respiratory infections among the world's most susceptible populations. Funding Bill & Melinda Gates Foundation.
                Bookmark

                Author and article information

                Journal
                BMJ Open Respir Res
                BMJ Open Respir Res
                bmjresp
                bmjopenrespres
                BMJ Open Respiratory Research
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2052-4439
                2021
                4 March 2021
                : 8
                : 1
                : e000866
                Affiliations
                [1 ] departmentDepartment of Environmental and Occupational Health Sciences , University of Washington School of Public Health , Seattle, Washington, USA
                [2 ] departmentDepartment of Epidemiology , University of Washington School of Public Health , Seattle, Washington, USA
                [3 ] departmentDepartments of Environmental and Occupational Health Sciences, Medicine, and Epidemiology , University of Washington , Seattle, Washington, USA
                Author notes
                [Correspondence to ] Kipruto Kirwa; kirwa@ 123456uw.edu
                Article
                bmjresp-2020-000866
                10.1136/bmjresp-2020-000866
                7934778
                33664125
                c9a2ec3e-f699-40f2-8154-5a2017230442
                © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 20 December 2020
                : 01 February 2021
                : 05 February 2021
                Funding
                Funded by: National Institutes of Environmental Health Sciences;
                Award ID: P30ES007033
                Funded by: FundRef http://dx.doi.org/10.13039/100000050, National Heart, Lung, and Blood Institute;
                Award ID: 75N92020D00001, HHSN268201500003I, N01-HC-95159, 7
                Funded by: FundRef http://dx.doi.org/10.13039/100000139, U.S. Environmental Protection Agency;
                Award ID: RD-83830001
                Award ID: RD831697
                Funded by: National Center for Advancing Translational Sciences;
                Award ID: UL1-TR-000040, UL1-TR-001079, UL1-TR-001420
                Categories
                Environmental Exposure
                1506
                2219
                Custom metadata
                unlocked

                respiratory infection
                respiratory infection

                Comments

                Comment on this article