3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emission and Reduction of Air Pollutants from Charcoal-Making Process in the Vietnamese Mekong Delta

      , , , , , ,
      Climate
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Charcoal is a fuelwood commonly used for domestic purposes on the household scale in Africa and Southeast Asia. Earnings from charcoal production contribute to the income of local inhabitants in rural areas. Unfortunately, airborne emissions from the traditional charcoal-making process affect both human health and the ambient environment. A series of studies were performed at a charcoal-making village in the Vietnamese Mekong Delta (VMD) to assess: (i) air pollutant emissions from the traditional charcoal-making process; (ii) the impacts on human well-being and the environment of traditional charcoal production; (iii) the loading of carbon dioxide from a charcoal-making kiln; and (iv) the efficiency in reducing contaminants of an air pollution-controlling method developed at a charcoal-making kiln. Study results revealed that the traditional charcoal-making method causes a substantial loss of carbon from fuelwood materials and emits the products of incomplete combustion. These contaminants negatively impact human well-being and the environment. Carbon dioxide and incomplete combustion substances emitted from the charcoal-making kiln are potential causes of the global warming phenomenon. The installation of an air pollution-controlling system at the charcoal-making kiln is recommended as an urgent solution before alternatives would be found to control the impacts of charcoal production.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Birth Outcomes and Prenatal Exposure to Ozone, Carbon Monoxide, and Particulate Matter: Results from the Children’s Health Study

          Exposures to ambient air pollutants have been associated with adverse birth outcomes. We investigated the effects of air pollutants on birth weight mediated by reduced fetal growth among term infants who were born in California during 1975–1987 and who participated in the Children’s Health Study. Birth certificates provided maternal reproductive history and residence location at birth. Sociodemographic factors and maternal smoking during pregnancy were collected by questionnaire. Monthly average air pollutant levels were interpolated from monitors to the ZIP code of maternal residence at childbirth. Results from linear mixed-effects regression models showed that a 12-ppb increase in 24-hr ozone averaged over the entire pregnancy was associated with 47.2 g lower birth weight [95% confidence interval (CI), 27.4–67.0 g], and this association was most robust for exposures during the second and third trimesters. A 1.4-ppm difference in first-trimester carbon monoxide exposure was associated with 21.7 g lower birth weight (95% CI, 1.1–42.3 g) and 20% increased risk of intrauterine growth retardation (95% CI, 1.0–1.4). First-trimester CO and third-trimester O3 exposures were associated with 20% increased risk of intrauterine growth retardation. A 20-μg/m3 difference in levels of particulate matter ≤ 10 μm in aerodynamic diameter (PM10) during the third trimester was associated with a 21.7-g lower birth weight (95% CI, 1.1–42.2 g), but this association was reduced and not significant after adjusting for O3. In summary, O3 exposure during the second and third trimesters and CO exposure during the first trimester were associated with reduced birth weight.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Acute Effects of Particulate Matter and Black Carbon from Seasonal Fires on Peak Expiratory Flow of Schoolchildren in the Brazilian Amazon

            Background Panel studies have shown adverse effects of air pollution from biomass burning on children's health. This study estimated the effect of current levels of outdoor air pollution in the Amazonian dry season on peak expiratory flow (PEF). Methods A panel study with 234 schoolchildren from 6 to 15 years old living in the municipality of Tangará da Serra, Brazil was conducted. PEF was measured daily in the dry season in 2008. Mixed-effects models and unified modelling repeated for every child were applied. Time trends, temperature, humidity, and subject characteristics were regarded. Inhalable particulate matter (PM10), fine particulate matter (PM2.5), and black carbon (BC) effects were evaluated based on 24-hour exposure lagged by 1 to 5 days and the averages of 2 or 3 days. Polynomial distributed lag models (PDLM) were also applied. Results The analyses revealed reductions in PEF for PM10 and PM2.5 increases of 10 µg/m3 and 1 µg/m3 for BC. For PM10, the reductions varied from 0.15 (confidence interval (CI)95%: −0.29; −0.01) to 0.25 l/min (CI95%: −0.40; −0.10). For PM2.5, they ranged from 0.46 (CI95%: −0.86 to −0.06) to 0.54 l/min (CI95%:−0.95; −0.14). As for BC, the reduction was approximately 1.40 l/min. In relation to PDLM, adverse effects were noticed in models based on the exposure on the current day through the previous 3 days (PDLM 0–3) and on the current day through the previous 5 days (PDLM 0–5), specially for PM10. For all children, for PDLM 0–5 the global effect was important for PM10, with PEF reduction of 0.31 l/min (CI95%: −0.56; −0.05). Also, reductions in lags 3 and 4 were observed. These associations were stronger for children between 6 and 8 years old. Conclusion Reductions in PEF were associated with air pollution, mainly for lagged exposures of 3 to 5 days and for younger children.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Emissions of greenhouse gases and other airborne pollutants from charcoal making in Kenya and Brazil

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CLIMC9
                Climate
                Climate
                MDPI AG
                2225-1154
                July 2023
                July 14 2023
                : 11
                : 7
                : 149
                Article
                10.3390/cli11070149
                c9fd1ce9-0915-448a-95a0-cb24310750f4
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article