7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biomineralization control related to population density under ocean acidification

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthropogenic CO2 is a major driver of current environmental change in most ecosystems1, and the related ocean acidification (OA) is threatening marine biota2. With increasing pCO2, calcification rates of several species decrease3, although cases of up-regulation are observed4. Here, we show that biological control over mineralization relates to species abundance along a natural pH gradient. As pCO2 increased, the mineralogy of a scleractinian coral (Balanophyllia europaea) and a mollusc (Vermetus triqueter) did not change. In contrast, two calcifying algae (Padina pavonica and Acetabularia acetabulum) reduced and changed mineralization with increasing pCO2, from aragonite to the less soluble calcium sulphates and whewellite, respectively. As pCO2 increased, the coral and mollusc abundance was severely reduced, with both species disappearing at pH < 7.8. Conversely, the two calcifying and a non-calcifying algae (Lobophora variegata) showed less severe or no reductions with increasing pCO2, and were all found at the lowest pH site. The mineralization response to decreasing pH suggests a link with the degree of control over the biomineralization process by the organism, as only species with lower control managed to thrive in the lowest pH.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms.

          Ocean acidification is a pervasive stressor that could affect many marine organisms and cause profound ecological shifts. A variety of biological responses to ocean acidification have been measured across a range of taxa, but this information exists as case studies and has not been synthesized into meaningful comparisons amongst response variables and functional groups. We used meta-analytic techniques to explore the biological responses to ocean acidification, and found negative effects on survival, calcification, growth and reproduction. However, there was significant variation in the sensitivity of marine organisms. Calcifying organisms generally exhibited larger negative responses than non-calcifying organisms across numerous response variables, with the exception of crustaceans, which calcify but were not negatively affected. Calcification responses varied significantly amongst organisms using different mineral forms of calcium carbonate. Organisms using one of the more soluble forms of calcium carbonate (high-magnesium calcite) can be more resilient to ocean acidification than less soluble forms (calcite and aragonite). Additionally, there was variation in the sensitivities of different developmental stages, but this variation was dependent on the taxonomic group. Our analyses suggest that the biological effects of ocean acidification are generally large and negative, but the variation in sensitivity amongst organisms has important implications for ecosystem responses. © 2010 Blackwell Publishing Ltd/CNRS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.

            The atmospheric partial pressure of carbon dioxide (p(CO(2))) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years. The oceans are a principal sink for anthropogenic CO(2) where it is estimated to have caused a 30% increase in the concentration of H(+) in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100 (refs 2, 3). Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO(2) vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of p(CO(2)). Sea-grass production was highest in an area at mean pH 7.6 (1,827 (mu)atm p(CO(2))) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of p(CO(2)) and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification

                Bookmark

                Author and article information

                Journal
                Nature Climate Change
                Nature Climate change
                Springer Nature
                1758-678X
                1758-6798
                May 25 2014
                May 25 2014
                : 4
                : 7
                : 593-597
                Article
                10.1038/nclimate2241
                4110709
                25071869
                ca3d866e-ff74-4c3c-aa7f-0663ca4f6070
                © 2014
                History

                Comments

                Comment on this article