12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome and Phytochemical Analyses Provide New Insights Into Long Non-Coding RNAs Modulating Characteristic Secondary Metabolites of Oolong Tea ( Camellia sinensis) in Solar-Withering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oolong tea is a popular and semi-fermented beverage. During the processing of tea leaves, withering is the first indispensable process for improving flavor. However, the roles of long non-coding RNAs (lncRNAs) and the characteristic secondary metabolites during the withering of oolong tea leaves remain unknown. In this study, phytochemical analyses indicated that total polyphenols, flavonoids, catechins, epigallocatechin (EGC), catechin gallate (CG), gallocatechin gallate (GCG), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) were all less abundant in the solar-withered leaves (SW) than in the fresh leaves (FL) and indoor-withered leaves (IW). In contrast, terpenoid, jasmonic acid (JA), and methyl jasmonate (MeJA) contents were higher in the SW than in the FL and IW. By analyzing the transcriptome data, we detected 32,036 lncRNAs. On the basis of the Kyoto Encyclopedia of Genes and Genomes analysis, the flavonoid metabolic pathway, the terpenoid metabolic pathway, and the JA/MeJA biosynthesis and signal transduction pathway were enriched pathways. Additionally, 63 differentially expressed lncRNAs (DE-lncRNAs) and 23 target genes were identified related to the three pathways. A comparison of the expression profiles of the DE-lncRNAs and their target genes between the SW and IW revealed four up-regulated genes ( FLS, CCR, CAD, and HCT), seven up-regulated lncRNAs, four down-regulated genes ( 4CL, CHI, F3H, and F3’H), and three down-regulated lncRNAs related to flavonoid metabolism; nine up-regulated genes ( DXS, CMK, HDS, HDR, AACT, MVK, PMK, GGPPS, and TPS), three up-regulated lncRNAs, and six down-regulated lncRNAs related to terpenoid metabolism; as well as six up-regulated genes ( LOX, AOS, AOC, OPR, ACX, and MFP2), four up-regulated lncRNAs, and three down-regulated lncRNAs related to JA/MeJA biosynthesis and signal transduction. These results suggested that the expression of DE-lncRNAs and their targets involved in the three pathways may be related to the low abundance of the total polyphenols, flavonoids, and catechins (EGC, CG, GCG, ECG, and EGCG) and the high abundance of terpenoids in the SW. Moreover, solar irradiation, high JA and MeJA contents, and the endogenous target mimic (eTM)-related regulatory mechanism in the SW were also crucial for increasing the terpenoid levels. These findings provide new insights into the greater contribution of solar-withering to the high-quality flavor of oolong tea compared with the effects of indoor-withering.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.

          Methods used to sequence the transcriptome often produce more than 200 million short sequences. We introduce StringTie, a computational method that applies a network flow algorithm originally developed in optimization theory, together with optional de novo assembly, to assemble these complex data sets into transcripts. When used to analyze both simulated and real data sets, StringTie produces more complete and accurate reconstructions of genes and better estimates of expression levels, compared with other leading transcript assembly programs including Cufflinks, IsoLasso, Scripture and Traph. For example, on 90 million reads from human blood, StringTie correctly assembled 10,990 transcripts, whereas the next best assembly was of 7,187 transcripts by Cufflinks, which is a 53% increase in transcripts assembled. On a simulated data set, StringTie correctly assembled 7,559 transcripts, which is 20% more than the 6,310 assembled by Cufflinks. As well as producing a more complete transcriptome assembly, StringTie runs faster on all data sets tested to date compared with other assembly software, including Cufflinks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Next-generation transcriptome assembly.

            Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalogue of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies - along with some perspectives on transcriptome assembly in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biosynthesis, function and metabolic engineering of plant volatile organic compounds.

              Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                27 December 2019
                2019
                : 10
                : 1638
                Affiliations
                [1] 1 College of Horticulture, Fujian Agriculture and Forestry University , Fuzhou, China
                [2] 2 Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University , Fuzhou, China
                Author notes

                Edited by: Hiroyuki Morita, University of Toyama, Japan

                Reviewed by: Chaoling Wei, Anhui Agricultural University, China; Tao Xia, Anhui Agricultural University, China

                *Correspondence: Zhongxiong Lai, laizx01@ 123456163.com ; Yuqiong Guo, guoyq828@ 123456163.com

                This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.01638
                6941427
                31929782
                ca54488e-63f7-4ead-b9fd-2e0aee703e86
                Copyright © 2019 Zhu, Zhang, Fu, Zhou, Chen, Li, Lin, Lai and Guo

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 August 2019
                : 20 November 2019
                Page count
                Figures: 9, Tables: 1, Equations: 0, References: 137, Pages: 25, Words: 13708
                Funding
                Funded by: Natural Science Foundation of Fujian Province 10.13039/501100003392
                Award ID: 2018J01701
                Funded by: Earmarked Fund for China Agriculture Research System 10.13039/501100010038
                Award ID: CARS-19
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                camellia sinensis,withering,transcriptome,long non-coding rnas,secondary metabolites

                Comments

                Comment on this article