11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fundamentals of Multiferroic Materials and Their Possible Applications

      Critical Reviews in Solid State and Materials Sciences
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetic control of ferroelectric polarization.

          The magnetoelectric effect--the induction of magnetization by means of an electric field and induction of polarization by means of a magnetic field--was first presumed to exist by Pierre Curie, and subsequently attracted a great deal of interest in the 1960s and 1970s (refs 2-4). More recently, related studies on magnetic ferroelectrics have signalled a revival of interest in this phenomenon. From a technological point of view, the mutual control of electric and magnetic properties is an attractive possibility, but the number of candidate materials is limited and the effects are typically too small to be useful in applications. Here we report the discovery of ferroelectricity in a perovskite manganite, TbMnO3, where the effect of spin frustration causes sinusoidal antiferromagnetic ordering. The modulated magnetic structure is accompanied by a magnetoelastically induced lattice modulation, and with the emergence of a spontaneous polarization. In the magnetic ferroelectric TbMnO3, we found gigantic magnetoelectric and magnetocapacitance effects, which can be attributed to switching of the electric polarization induced by magnetic fields. Frustrated spin systems therefore provide a new area to search for magnetoelectric media.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epitaxial BiFeO3 multiferroic thin film heterostructures.

            Enhancement of polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, is reported. Structure analysis indicates that the crystal structure of film is monoclinic in contrast to bulk, which is rhombohedral. The films display a room-temperature spontaneous polarization (50 to 60 microcoulombs per square centimeter) almost an order of magnitude higher than that of the bulk (6.1 microcoulombs per square centimeter). The observed enhancement is corroborated by first-principles calculations and found to originate from a high sensitivity of the polarization to small changes in lattice parameters. The films also exhibit enhanced thickness-dependent magnetism compared with the bulk. These enhanced and combined functional responses in thin film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelectric order parameters.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On the Theory of Ferromagnetic Resonance Absorption

                Bookmark

                Author and article information

                Journal
                Critical Reviews in Solid State and Materials Sciences
                Critical Reviews in Solid State and Materials Sciences
                Informa UK Limited
                1040-8436
                1547-6561
                February 19 2015
                March 09 2015
                : 40
                : 4
                : 223-250
                Article
                10.1080/10408436.2014.992584
                ca836aee-e5fa-490b-9f72-6ff529e2d9e7
                © 2015
                History

                Comments

                Comment on this article