3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution

      ,
      Biology Letters
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d5936794e174">The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of ‘city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. </p>

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          The ecological impacts of nighttime light pollution: a mechanistic appraisal.

          The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Limiting the impact of light pollution on human health, environment and stellar visibility.

            Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this "residual light pollution", cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment and on visual perception of the Universe by humans. We present quantitative criteria to evaluate the lamps based on their spectral emissions and we suggest regulatory limits for future lighting. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The first world atlas of the artificial night sky brightness

              We present the first World Atlas of the zenith artificial night sky brightness at sea level. Based on radiance calibrated high resolution DMSP satellite data and on accurate modelling of light propagation in the atmosphere, it provides a nearly global picture of how mankind is proceeding to envelope itself in a luminous fog. Comparing the Atlas with the U.S. Department of Energy (DOE) population density database we determined the fraction of population who are living under a sky of given brightness. About two thirds of the World population and 99% of the population in US (excluding Alaska and Hawaii) and EU live in areas where the night sky is above the threshold set for polluted status. Assuming average eye functionality, about one fifth of the World population, more than two thirds of the US population and more than one half of the EU population have already lost naked eye visibility of the Milky Way. Finally, about one tenth of the World population, more than 40% of the US population and one sixth of the EU population no longer view the heavens with the eye adapted to night vision because the sky brightness.
                Bookmark

                Author and article information

                Journal
                Biology Letters
                Biol. Lett.
                The Royal Society
                1744-9561
                1744-957X
                April 12 2016
                April 12 2016
                : 12
                : 4
                : 20160111
                Article
                10.1098/rsbl.2016.0111
                4881357
                27072407
                cab52275-bd76-4fc7-a421-7d72ac0cdf6c
                © 2016
                History

                Comments

                Comment on this article