0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthetic control of living cells by intracellular polymerization

      , , , , , ,
      Trends in Biotechnology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Reactive oxygen species in cancer.

          Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumour development and progression. However, tumour cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signalling to effectively deprive cells from ROS-induced tumour promoting events, towards tipping the balance to ROS-induced apoptotic signalling. Alternatively, therapeutic antioxidants may prevent early events in tumour development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signalling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize, but also provides an outlook on their modulation in therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell Membrane Coating Nanotechnology

            Nanoparticle-based therapeutic, prevention, and detection modalities have the potential to greatly impact how diseases are diagnosed and managed in the clinic. With the wide range of different nanomaterials available to nanomedicine researchers, the rational design of nanocarriers on an application-specific basis has become increasingly commonplace. In this review, we provide a comprehensive overview on an emerging platform: cell membrane coating nanotechnology. As one of the most fundamental units in biology, a cell carries out a wide range of functions, including its remarkable ability to interface and interact with its surrounding environment. Instead of attempting to replicate such functions via synthetic techniques, researchers are now directly leveraging naturally derived cell membranes as a means of bestowing nanoparticles with enhanced biointerfacing capabilities. This top-down technique is facile, highly generalizable, and has the potential to greatly augment the potency and safety of existing nanocarriers. Further, the introduction of a natural membrane substrate onto the surface of a nanoparticle has enabled additional applications beyond those already associated with the field of nanomedicine. Despite the relative youth of the cell membrane coating technique, there exists an impressive body of literature on the topic, which will be covered in detail in this review. Overall, there is still significant room for development, as researchers continue to refine existing workflows while finding new and exciting applications that can take advantage of this emerging technology. Cell membrane coating is an emerging nanotechnology. By cloaking nanomaterials in a layer of natural cell membrane, which can be derived from a variety of cell types, it is possible to fabricate nanoplatforms with enhanced surface functionality. This can lead to increased nanoparticle performance in complex biological environments, which can benefit applications like drug delivery, imaging, phototherapies, immunotherapies, and detoxification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoparticle biointerfacing via platelet membrane cloaking

              Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can negatively impact nanoparticle effectiveness in complex, physiologically relevant systems 1–3 . Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates 4–7 . The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. As compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and are absent of particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Trends in Biotechnology
                Trends in Biotechnology
                Elsevier BV
                01677799
                February 2024
                February 2024
                : 42
                : 2
                : 241-252
                Article
                10.1016/j.tibtech.2023.08.006
                cadf3576-ec3b-4972-b0fe-bdc5d8e1b220
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article