34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An adult zebrafish model for Laribacter hongkongensis infection: Koch's postulates fulfilled

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Laribacter hongkongensis is a gram-negative emerging bacterium associated with invasive bacteremic infections in patients with liver disease and fish-borne community-acquired gastroenteritis and traveler's diarrhea. Although the complete genome of L. hongkongensis has been sequenced, no animal model is available for further study of its pathogenicity mechanisms. In this study, we showed that adult zebrafish infected with L. hongkongensis by immersion following dermal abrasion or intraperitoneal injection suffered mortality in a dose-dependent manner, with lethal dose 50 (LD50) of 2.1×10 4 and 1.9×10 4 colony-forming units (CFU)/mL, respectively. All mortalities occurred in the first four days post-infection. Zebrafish that died showed characteristic clinicopathological features: swimming near water surface, marked lethargy and sidestroke; abdominal hemorrhage, ulcers and marked swelling with ascites; and hydropic degeneration and necrosis of hepatocytes around central vein and inflammatory cells infiltration. L. hongkongensis was recovered from the ascitic fluid and tissues of zebrafish that died. Of the 30 zebrafish infected with 2.1×10 4 CFU/mL (LD50) L. hongkongensis isolated from dead zebrafish using the immersion following dermal abrasion method, 18 (60%) died. All zebrafish that died also showed the characteristic clinical and pathological features. Histopathological studies also showed dilation of hepatic central vein and hydropic degeneration. L. hongkongensis was isolated from the zebrafish that died. The Koch's postulates for L. hongkongensis as an infectious agent have been fulfilled. This highly reproducible and effective zebrafish model is of crucial importance for future studies on virulence factors for L. hongkongensis infection.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens.

          With the emergence of multiply resistant Staphylococcus aureus, there is an urgent need to better understand the molecular determinants of S. aureus pathogenesis. A model of staphylococcal pathogenesis in zebrafish embryos has been established, in which host phagocytes are able to mount an effective immune response, preventing overwhelming infection from small inocula. Myeloid cell depletion, by pu.1 morpholino-modified antisense injection, removes this immune protection. Macrophages and neutrophils are both implicated in this immune response, phagocytosing circulating bacteria. In addition, in vivo phagocyte/bacteria interactions can be visualized within transparent embryos. A preliminary screen for bacterial pathogenesis determinants has shown that strains bearing mutations in perR, pheP and saeR are attenuated. perR and pheP mutants are deficient in growth in vivo, and their virulence is not fully restored by myeloid cell depletion. On the other hand, saeR mutants are able to grow in vivo, and are completely restored to virulence by myeloid cell depletion. Thus specific pathogen gene function can be matched with particular facets of host response. Zebrafish are a new addition to the tools available for the study of S. aureus pathogenesis, and may provide insights into the interactions of bacterial and host genomes in determining the outcome of infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Streptococcus-zebrafish model of bacterial pathogenesis.

            Due to its small size, rapid generation time, powerful genetic systems, and genomic resources, the zebrafish has emerged as an important model of vertebrate development and human disease. Its well-developed adaptive and innate cellular immune systems make the zebrafish an ideal model for the study of infectious diseases. With a natural and important pathogen of fish, Streptococcus iniae, we have established a streptococcus- zebrafish model of bacterial pathogenesis. Following injection into the dorsal muscle, zebrafish developed a lethal infection, with a 50% lethal dose of 10(3) CFU, and died within 2 to 3 days. The pathogenesis of infection resembled that of S. iniae in farmed fish populations and that of several important human streptococcal diseases and was characterized by an initial focal necrotic lesion that rapidly progressed to invasion of the pathogen into all major organ systems, including the brain. Zebrafish were also susceptible to infection by the human pathogen Streptococcus pyogenes. However, disease was characterized by a marked absence of inflammation, large numbers of extracellular streptococci in the dorsal muscle, and extensive myonecrosis that occurred far in advance of any systemic invasion. The genetic systems available for streptococci, including a novel method of mutagenesis which targets genes whose products are exported, were used to identify several mutants attenuated for virulence in zebrafish. This combination of a genetically amenable pathogen with a well-defined vertebrate host makes the streptococcus-zebrafish model of bacterial pathogenesis a powerful model for analysis of infectious disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections.

              Bacterial virulence is best studied in animal models. However, the lack of possibilities for real time analysis and the need for laborious and invasive sample analysis limit the use of experimental animals. In the present study 28 h-old zebrafish embryos were infected with DsRed-labelled cells of Salmonella typhimurium. Using multidimensional digital imaging microscopy we were able to determine the exact location and fate of these bacterial pathogens in a living vertebrate host during three days. A low dose of wild-type S. typhimurium resulted in a lethal infection with bacteria residing and multiplying both in macrophage-like cells and at the epithelium of blood vessels. Lipopolysaccharide (LPS) mutants of S. typhimurium, known to be attenuated in the murine model, proved to be non-pathogenic in the zebrafish embryos and were partially lysed in the bloodstream or degraded in macrophage-like cells. However, injection of LPS mutants in the yolk of the embryo resulted in uncontrolled bacterial proliferation. Heat-killed, wild-type bacteria were completely lysed extracellularly within minutes after injection, which shows that the blood of these zebrafish embryos does already contain lytic activity. In conclusion, the zebrafish embryo model allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host.
                Bookmark

                Author and article information

                Journal
                Emerg Microbes Infect
                Emerg Microbes Infect
                Emerging Microbes & Infections
                Nature Publishing Group
                2222-1751
                October 2014
                22 October 2014
                1 October 2014
                : 3
                : 10
                : e73
                Affiliations
                [1 ]The Second Clinical Medical College, Southern Medical University , Guangzhou 510515, Guangdong Province, China
                [2 ]The First Clinical Medical College, Southern Medical University , Guangzhou 510515, Guangdong Province, China
                [3 ]Biosafety Level-3 Laboratory, School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, Guangdong Province, China
                [4 ]State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong , Hong Kong, China
                Author notes
                Article
                emi201473
                10.1038/emi.2014.73
                4217094
                cb09320b-d3fb-4530-bbbd-7961d1b9344f
                Copyright © 2014 Shanghai Shangyixun Cultural Communication Co., Ltd

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 17 June 2014
                : 20 August 2014
                : 21 August 2014
                Categories
                Original Article

                animal model,infection,laribacter hongkongensis
                animal model, infection, laribacter hongkongensis

                Comments

                Comment on this article