21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of Sample Preparation Methods Used for the Next-Generation Sequencing of Mycobacterium tuberculosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The advent and widespread application of next-generation sequencing (NGS) technologies to the study of microbial genomes has led to a substantial increase in the number of studies in which whole genome sequencing (WGS) is applied to the analysis of microbial genomic epidemiology. However, microorganisms such as Mycobacterium tuberculosis (MTB) present unique problems for sequencing and downstream analysis based on their unique physiology and the composition of their genomes. In this study, we compare the quality of sequence data generated using the Nextera and TruSeq isolate preparation kits for library construction prior to Illumina sequencing-by-synthesis. Our results confirm that MTB NGS data quality is highly dependent on the purity of the DNA sample submitted for sequencing and its guanine-cytosine content (or GC-content). Our data additionally demonstrate that the choice of library preparation method plays an important role in mitigating downstream sequencing quality issues. Importantly for MTB, the Illumina TruSeq library preparation kit produces more uniform data quality than the Nextera XT method, regardless of the quality of the input DNA. Furthermore, specific genomic sequence motifs are commonly missed by the Nextera XT method, as are regions of especially high GC-content relative to the rest of the MTB genome. As coverage bias is highly undesirable, this study illustrates the importance of appropriate protocol selection when performing NGS studies in order to ensure that sound inferences can be made regarding mycobacterial genomes.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sequence-specific error profile of Illumina sequencers

            We identified the sequence-specific starting positions of consecutive miscalls in the mapping of reads obtained from the Illumina Genome Analyser (GA). Detailed analysis of the miscall pattern indicated that the underlying mechanism involves sequence-specific interference of the base elongation process during sequencing. The two major sequence patterns that trigger this sequence-specific error (SSE) are: (i) inverted repeats and (ii) GGC sequences. We speculate that these sequences favor dephasing by inhibiting single-base elongation, by: (i) folding single-stranded DNA and (ii) altering enzyme preference. This phenomenon is a major cause of sequence coverage variability and of the unfavorable bias observed for population-targeted methods such as RNA-seq and ChIP-seq. Moreover, SSE is a potential cause of false single-nucleotide polymorphism (SNP) calls and also significantly hinders de novo assembly. This article highlights the importance of recognizing SSE and its underlying mechanisms in the hope of enhancing the potential usefulness of the Illumina sequencers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interactive microbial genome visualization with GView

              Summary: GView is a Java application for viewing and examining prokaryotic genomes in a circular or linear context. It accepts standard sequence file formats and an optional style specification file to generate customizable, publication quality genome maps in bitmap and scalable vector graphics formats. GView features an interactive pan-and-zoom interface, a command-line interface for incorporation in genome analysis pipelines, and a public Application Programming Interface for incorporation in other Java applications. Availability: GView is a freely available application licensed under the GNU Public License. The application, source code, documentation, file specifications, tutorials and image galleries are available at http://gview.ca Contact: gary.van.domselaar@phac-aspc.gc.ca
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                5 February 2016
                2016
                : 11
                : 2
                : e0148676
                Affiliations
                [1 ]National Microbiology Laboratory, National Reference Centre for Mycobacteriology, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
                [2 ]Science Technology Cores & Services Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
                [3 ]Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
                [4 ]Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
                Institut Pasteur de Lille, FRANCE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ADT SC MKS GV MRG. Performed the experiments: ADT SC. Analyzed the data: ADT NK PM. Contributed reagents/materials/analysis tools: JW MRG GV MKS. Wrote the paper: ADT SC NCK PM JW GV MRG MKS.

                Article
                PONE-D-15-39855
                10.1371/journal.pone.0148676
                4744016
                26849565
                cb2c4fe2-ef37-43db-b751-d0019d1f8fec
                © 2016 Tyler et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 September 2015
                : 20 January 2016
                Page count
                Figures: 5, Tables: 0, Pages: 14
                Funding
                This study was funded through an intramural grant from the Canadian federal Genomics Research and Development Initiative (GRDI) from the Government of Canada and the Public Health Agency of Canada. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Motif Analysis
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Motif Analysis
                Biology and Life Sciences
                Organisms
                Bacteria
                Actinobacteria
                Mycobacterium Tuberculosis
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Genomic Libraries
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Genomic Libraries
                Biology and life sciences
                Molecular biology
                Molecular biology techniques
                DNA construction
                DNA library construction
                Genomic Library Construction
                Research and analysis methods
                Molecular biology techniques
                DNA construction
                DNA library construction
                Genomic Library Construction
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Genome Sequencing
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Genome Sequencing
                Biology and life sciences
                Molecular biology
                Molecular biology techniques
                Sequencing techniques
                DNA sequencing
                Research and analysis methods
                Molecular biology techniques
                Sequencing techniques
                DNA sequencing
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Sequence Assembly Tools
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Sequence Assembly Tools
                Biology and life sciences
                Molecular biology
                Molecular biology techniques
                Sequencing techniques
                DNA sequencing
                Next-Generation Sequencing
                Research and analysis methods
                Molecular biology techniques
                Sequencing techniques
                DNA sequencing
                Next-Generation Sequencing
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Transcriptome Analysis
                Next-Generation Sequencing
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Transcriptome Analysis
                Next-Generation Sequencing
                Custom metadata
                Fastq reads generated in this study have been submitted to the NCBI Sequence read archive (SRA) under Bioproject SRP064127 (PRNJA295328).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article