15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-217 Promotes Cardiac Hypertrophy and Dysfunction by Targeting PTEN

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previously, we found that the miR-217 expression level was increased in hearts from chronic heart failure (CHF) patients by using miRNA profile analysis. This study aimed to explore the role of miR-217 in cardiac dysfunction. Heart tissue samples from CHF patients were used to detect miR-217 expression levels. A type 9 recombinant adeno-associated virus (rAAV9) was employed to manipulate miR-217 expression in mice with thoracic aortic constriction (TAC)-induced cardiac dysfunction. Cardiac structure and function were measured by echocardiography and invasive pressure-volume analysis. The expression levels of miR-217 were increased in hearts from both CHF patients and TAC mice. Overexpression of miR-217 in vivo aggravated pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction, whereas miR-217-TUD-mediated downregulation of miR-217 reversed these effects. PTEN was predicted and validated as a direct target of miR-217, and re-expression of PTEN attenuated miR-217-mediated cardiac hypertrophy and cardiac dysfunction. Importantly, cardiomyocyte-derived miR-217-containing exosomes enhanced proliferation of fibroblasts in vitro. All of these findings show that miR-217 participates in cardiac hypertrophy and cardiac fibrosis processes through regulating PTEN, which suggests a promising therapeutic target for CHF.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice.

          MicroRNAs (miRNAs) are a class of small noncoding RNAs that have gained status as important regulators of gene expression. Here, we investigated the function and molecular mechanisms of the miR-208 family of miRNAs in adult mouse heart physiology. We found that miR-208a, which is encoded within an intron of alpha-cardiac muscle myosin heavy chain gene (Myh6), was actually a member of a miRNA family that also included miR-208b, which was determined to be encoded within an intron of beta-cardiac muscle myosin heavy chain gene (Myh7). These miRNAs were differentially expressed in the mouse heart, paralleling the expression of their host genes. Transgenic overexpression of miR-208a in the heart was sufficient to induce hypertrophic growth in mice, which resulted in pronounced repression of the miR-208 regulatory targets thyroid hormone-associated protein 1 and myostatin, 2 negative regulators of muscle growth and hypertrophy. Studies of the miR-208a Tg mice indicated that miR-208a expression was sufficient to induce arrhythmias. Furthermore, analysis of mice lacking miR-208a indicated that miR-208a was required for proper cardiac conduction and expression of the cardiac transcription factors homeodomain-only protein and GATA4 and the gap junction protein connexin 40. Together, our studies uncover what we believe are novel miRNA-dependent mechanisms that modulate cardiac hypertrophy and electrical conduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies.

            Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure. 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association.

              Natriuretic peptides have led the way as a diagnostic and prognostic tool for the diagnosis and management of heart failure (HF). More recent evidence suggests that natriuretic peptides along with the next generation of biomarkers may provide added value to medical management, which could potentially lower risk of mortality and readmissions. The purpose of this scientific statement is to summarize the existing literature and to provide guidance for the utility of currently available biomarkers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Nucleic Acids
                Mol Ther Nucleic Acids
                Molecular Therapy. Nucleic Acids
                American Society of Gene & Cell Therapy
                2162-2531
                17 June 2018
                07 September 2018
                17 June 2018
                : 12
                : 254-266
                Affiliations
                [1 ]Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
                [2 ]Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
                [3 ]Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
                Author notes
                []Corresponding author: Nianguo Dong, Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. dongnianguo@ 123456hotmail.com
                [∗∗ ]Corresponding author: Chen Chen, Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. chenchen@ 123456tjh.tjmu.edu.cn
                Article
                S2162-2531(18)30110-0
                10.1016/j.omtn.2018.05.013
                6005806
                30195764
                cb53ef52-1b6d-4822-8325-55e84cd96e32
                © 2018 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 17 October 2017
                : 16 May 2018
                Categories
                Article

                Molecular medicine
                mir-217,pten,cardiac hypertrophy,exosome
                Molecular medicine
                mir-217, pten, cardiac hypertrophy, exosome

                Comments

                Comment on this article